Respuesta :

Answer:

[tex]x = - 1 + \sqrt{17}\\and\\x = - 1 - \sqrt{17}\\[/tex]

Step-by-step explanation:

given equation

[tex]x^2 +2x +1 = 17[/tex]

subtracting 17 from both sides

[tex]x^2 +2x +1 = 17\\x^2 +2x +1 -17= 17-17\\x^2 +2x - 16 = 0\\[/tex]

the solution for quadratic equation

[tex]ax^2 + bx + c = 0[/tex] is given by

x = [tex]x = -b + \sqrt{b^2 - 4ac} /2a \\\\and \ \\-b - \sqrt{b^2 - 4ac} /2a[/tex]

________________________________

in our problem

a = 1

b = 2

c = -16

[tex]x =( -2 + \sqrt{2^2 - 4*1*-16}) /2*1 \\x =( -2 + \sqrt{4 + 64}) /2\\x =( -2 + \sqrt{68} )/2\\x = ( -2 + \sqrt{4*17} )/2\\x = ( -2 + 2\sqrt{17} )/2\\x = - 1 + \sqrt{17}\\and\\\\x = - 1 - \sqrt{17}\\[/tex]

thus value of x is

[tex]x = - 1 + \sqrt{17}\\and\\x = - 1 - \sqrt{17}\\[/tex]

ACCESS MORE