Answer:
[tex]\approx \bold{6544\ in^3/sec}[/tex]
Step-by-step explanation:
Given:
Rate of change of radius of cylinder:
[tex]\dfrac{dr}{dt} = +7\ in/sec[/tex]
(This is increasing rate so positive)
Rate of change of height of cylinder:
[tex]\dfrac{dh}{dt} = -6\ in/sec[/tex]
(This is decreasing rate so negative)
To find:
Rate of change of volume when r = 20 inches and h = 16 inches.
Solution:
First of all, let us have a look at the formula for Volume:
[tex]V = \pi r^2h[/tex]
Differentiating it w.r.to 't':
[tex]\dfrac{dV}{dt} = \dfrac{d}{dt}(\pi r^2h)[/tex]
Let us have a look at the formula:
[tex]1.\ \dfrac{d}{dx} (C.f(x)) = C\dfrac{d(f(x))}{dx} \ \ \ (\text{C is a constant})\\2.\ \dfrac{d}{dx} (f(x).g(x)) = f(x)\dfrac{d}{dx} (g(x))+g(x)\dfrac{d}{dx} (f(x))[/tex]
[tex]3.\ \dfrac{dx^n}{dx} = nx^{n-1}[/tex]
Applying the two formula for the above differentiation:
[tex]\Rightarrow \dfrac{dV}{dt} = \pi\dfrac{d}{dt}( r^2h)\\\Rightarrow \dfrac{dV}{dt} = \pi h\dfrac{d }{dt}( r^2)+\pi r^2\dfrac{dh }{dt}\\\Rightarrow \dfrac{dV}{dt} = \pi h\times 2r \dfrac{dr }{dt}+\pi r^2\dfrac{dh }{dt}[/tex]
Now, putting the values:
[tex]\Rightarrow \dfrac{dV}{dt} = \pi \times 16\times 2\times 20 \times 7+\pi\times 20^2\times (-6)\\\Rightarrow \dfrac{dV}{dt} = 22 \times 16\times 2\times 20 +3.14\times 400\times (-6)\\\Rightarrow \dfrac{dV}{dt} = 14080 -7536\\\Rightarrow \dfrac{dV}{dt} \approx \bold{6544\ in^3/sec}[/tex]
So, the answer is: [tex]\approx \bold{6544\ in^3/sec}[/tex]