The velocity of the particle 4 at time, t = 2.83 s, is -14.1 m/s.
The given parameters;
[tex]m_1 = 1.45 \ kg, \ \ v_1(t) = (6.09 \ m/s) + (0.299 \ m/s^2)\times t\\\\m_2 = 2.81 \ kg, \ \ v_2(t) = (7.83 \ m/s) + (0.357 \ m/s^2)\times t \\\\m_3 = 3.89 \ kg, \ \ v_3(t) = (8.09 \ m/s) + (0.405 \ m/s^2)\times t\\\\m_4 = 5.03 \ kg[/tex]
The velocity of the center mass of the particles is calculated as;
[tex]M_{cm}V_{cm} = m_1v_1 + m_2 v_2 + m_3v_3 + m_4v_4\\\\V_{cm} = \frac{m_1v_1 + m_2 v_2 + m_3v_3 + m_4v_4}{M_{cm}} \\\\0 = \frac{m_1v_1 + m_2 v_2 + m_3v_3 + m_4v_4}{M_{cm}}\\\\m_1v_1 + m_2 v_2 + m_3v_3 + m_4v_4 = 0\\\\m_4v_4 = -(m_1v_1 + m_2 v_2 + m_3v_3)\\\\v_4 = \frac{-(m_1v_1 + m_2 v_2 + m_3v_3)}{m_4}[/tex]
The velocity of particle 1 at time, t = 2.83 s;
[tex]v_1 = 6.09 \ + \ 0.299\times 2.83\\\\v_1 = 6.94 \ m/s[/tex]
The velocity of particle 2 at time, t = 2.83 s;
[tex]v_2 = 7.83\ + \ 0.357\times 2.83\\\\v_2 = 8.84 \ m/s[/tex]
The velocity of particle 3 at time, t = 2.83 s;
[tex]v_3 = 8.09\ + \ 0.405 \times 2.83\\\\v_3 = 9.24 \ m/s[/tex]
The velocity of the particle 4 at time, t = 2.83 s;
[tex]v_4 = \frac{-(m_1v_1 + m_2v_2 + m_3v_3)}{m_4} \\\\v_4 = \frac{-(1.45\times 6.94\ + \ 2.81\times 8.84\ + \ 3.89 \times 9.24)}{5.03} \\\\v_4 = -14 .1 \ m/s[/tex]
Thus, the velocity of the particle 4 at time, t = 2.83 s, is -14.1 m/s.
Learn more here:https://brainly.com/question/22698801