Find the mass and center of mass of the lamina that occupies the region D and has the given density function rho. D is the triangular region with vertices (0, 0), (2, 1), (0, 3); rho(x, y) = 2(x + y)

Respuesta :

Answer: mass (m) = 4 kg

              center of mass coordinate: (15.75,4.5)

Step-by-step explanation: As a surface, a lamina has 2 dimensions (x,y) and a density function.

The region D is shown in the attachment.

From the image of the triangle, lamina is limited at x-axis: 0≤x≤2

At y-axis, it is limited by the lines formed between (0,0) and (2,1) and (2,1) and (0.3):

Points (0,0) and (2,1):

y = [tex]\frac{1-0}{2-0}(x-0)[/tex]

y = [tex]\frac{x}{2}[/tex]

Points (2,1) and (0,3):

y = [tex]\frac{3-1}{0-2}(x-0) + 3[/tex]

y = -x + 3

Now, find total mass, which is given by the formula:

[tex]m = \int\limits^a_b {\int\limits^a_b {\rho(x,y)} \, dA }[/tex]

Calculating for the limits above:

[tex]m = \int\limits^2_0 {\int\limits^a_\frac{x}{2} {2(x+y)} \, dy \, dx }[/tex]

where a = -x+3

[tex]m = 2.\int\limits^2_0 {\int\limits^a_\frac{x}{2} {(xy+\frac{y^{2}}{2} )} \, dx }[/tex]

[tex]m = 2.\int\limits^2_0 {(-x^{2}-\frac{x^{2}}{2}+3x )} \, dx }[/tex]

[tex]m = 2.\int\limits^2_0 {(\frac{-3x^{2}}{2}+3x)} \, dx }[/tex]

[tex]m = 2.(\frac{-3.2^{2}}{2}+3.2-0)[/tex]

m = 2(-4+6)

m = 4

Mass of the lamina that occupies region D is 4.

Center of mass is the point of gravity of an object if it is in an uniform gravitational field. For the lamina, or any other 2 dimensional object, center of mass is calculated by:

[tex]M_{x} = \int\limits^a_b {\int\limits^a_b {y.\rho(x,y)} \, dA }[/tex]

[tex]M_{y} = \int\limits^a_b {\int\limits^a_b {x.\rho(x,y)} \, dA }[/tex]

[tex]M_{x}[/tex] and [tex]M_{y}[/tex] are moments of the lamina about x-axis and y-axis, respectively.

Calculating moments:

For moment about x-axis:

[tex]M_{x} = \int\limits^a_b {\int\limits^a_b {y.\rho(x,y)} \, dA }[/tex]

[tex]M_{x} = \int\limits^2_0 {\int\limits^a_\frac{x}{2} {2.y.(x+y)} \, dy\, dx }[/tex]

[tex]M_{x} = 2\int\limits^2_0 {\int\limits^a_\frac{x}{2} {y.x+y^{2}} \, dy\, dx }[/tex]

[tex]M_{x} = 2\int\limits^2_0 { ({\frac{y^{2}x}{2}+\frac{y^{3}}{3})}\, dx }[/tex]

[tex]M_{x} = 2\int\limits^2_0 { ({\frac{x(-x+3)^{2}}{2}+\frac{(-x+3)^{3}}{3} -\frac{x^{3}}{8}-\frac{x^{3}}{24} )}\, dx }[/tex]

[tex]M_{x} = 2.(\frac{-9.x^{2}}{4}+9x)[/tex]

[tex]M_{x} = 2.(\frac{-9.2^{2}}{4}+9.2)[/tex]

[tex]M_{x} = 18[/tex]

Now to find the x-coordinate:

x = [tex]\frac{M_{y}}{m}[/tex]

x = [tex]\frac{63}{4}[/tex]

x = 15.75

For moment about the y-axis:

[tex]M_{y} = \int\limits^2_0 {\int\limits^a_\frac{x}{2} {2x.(x+y))} \, dy\,dx }[/tex]

[tex]M_{y} = 2.\int\limits^2_0 {\int\limits^a_\frac{x}{2} {x^{2}+yx} \, dy\,dx }[/tex]

[tex]M_{y} = 2.\int\limits^2_0 {y.x^{2}+x.{\frac{y^{2}}{2} } } \,dx }[/tex]

[tex]M_{y} = 2.\int\limits^2_0 {x^{2}.(-x+3)+\frac{x.(-x+3)^{2}}{2} - {\frac{x^{3}}{2}-\frac{x^{3}}{8} } } \,dx }[/tex]

[tex]M_{y} = 2.\int\limits^2_0 {\frac{-9x^3}{8}+\frac{9x}{2} } \,dx }[/tex]

[tex]M_{y} = 2.({\frac{-9x^4}{32}+9x^{2})[/tex]

[tex]M_{y} = 2.({\frac{-9.2^4}{32}+9.2^{2}-0)[/tex]

[tex]M{y} =[/tex] 63

To find y-coordinate:

y = [tex]\frac{M_{x}}{m}[/tex]

y = [tex]\frac{18}{4}[/tex]

y = 4.5

Center mass coordinates for the lamina are (15.75,4.5)

Ver imagen cristoshiwa
ACCESS MORE
EDU ACCESS