Respuesta :
Answer: mass (m) = 4 kg
center of mass coordinate: (15.75,4.5)
Step-by-step explanation: As a surface, a lamina has 2 dimensions (x,y) and a density function.
The region D is shown in the attachment.
From the image of the triangle, lamina is limited at x-axis: 0≤x≤2
At y-axis, it is limited by the lines formed between (0,0) and (2,1) and (2,1) and (0.3):
Points (0,0) and (2,1):
y = [tex]\frac{1-0}{2-0}(x-0)[/tex]
y = [tex]\frac{x}{2}[/tex]
Points (2,1) and (0,3):
y = [tex]\frac{3-1}{0-2}(x-0) + 3[/tex]
y = -x + 3
Now, find total mass, which is given by the formula:
[tex]m = \int\limits^a_b {\int\limits^a_b {\rho(x,y)} \, dA }[/tex]
Calculating for the limits above:
[tex]m = \int\limits^2_0 {\int\limits^a_\frac{x}{2} {2(x+y)} \, dy \, dx }[/tex]
where a = -x+3
[tex]m = 2.\int\limits^2_0 {\int\limits^a_\frac{x}{2} {(xy+\frac{y^{2}}{2} )} \, dx }[/tex]
[tex]m = 2.\int\limits^2_0 {(-x^{2}-\frac{x^{2}}{2}+3x )} \, dx }[/tex]
[tex]m = 2.\int\limits^2_0 {(\frac{-3x^{2}}{2}+3x)} \, dx }[/tex]
[tex]m = 2.(\frac{-3.2^{2}}{2}+3.2-0)[/tex]
m = 2(-4+6)
m = 4
Mass of the lamina that occupies region D is 4.
Center of mass is the point of gravity of an object if it is in an uniform gravitational field. For the lamina, or any other 2 dimensional object, center of mass is calculated by:
[tex]M_{x} = \int\limits^a_b {\int\limits^a_b {y.\rho(x,y)} \, dA }[/tex]
[tex]M_{y} = \int\limits^a_b {\int\limits^a_b {x.\rho(x,y)} \, dA }[/tex]
[tex]M_{x}[/tex] and [tex]M_{y}[/tex] are moments of the lamina about x-axis and y-axis, respectively.
Calculating moments:
For moment about x-axis:
[tex]M_{x} = \int\limits^a_b {\int\limits^a_b {y.\rho(x,y)} \, dA }[/tex]
[tex]M_{x} = \int\limits^2_0 {\int\limits^a_\frac{x}{2} {2.y.(x+y)} \, dy\, dx }[/tex]
[tex]M_{x} = 2\int\limits^2_0 {\int\limits^a_\frac{x}{2} {y.x+y^{2}} \, dy\, dx }[/tex]
[tex]M_{x} = 2\int\limits^2_0 { ({\frac{y^{2}x}{2}+\frac{y^{3}}{3})}\, dx }[/tex]
[tex]M_{x} = 2\int\limits^2_0 { ({\frac{x(-x+3)^{2}}{2}+\frac{(-x+3)^{3}}{3} -\frac{x^{3}}{8}-\frac{x^{3}}{24} )}\, dx }[/tex]
[tex]M_{x} = 2.(\frac{-9.x^{2}}{4}+9x)[/tex]
[tex]M_{x} = 2.(\frac{-9.2^{2}}{4}+9.2)[/tex]
[tex]M_{x} = 18[/tex]
Now to find the x-coordinate:
x = [tex]\frac{M_{y}}{m}[/tex]
x = [tex]\frac{63}{4}[/tex]
x = 15.75
For moment about the y-axis:
[tex]M_{y} = \int\limits^2_0 {\int\limits^a_\frac{x}{2} {2x.(x+y))} \, dy\,dx }[/tex]
[tex]M_{y} = 2.\int\limits^2_0 {\int\limits^a_\frac{x}{2} {x^{2}+yx} \, dy\,dx }[/tex]
[tex]M_{y} = 2.\int\limits^2_0 {y.x^{2}+x.{\frac{y^{2}}{2} } } \,dx }[/tex]
[tex]M_{y} = 2.\int\limits^2_0 {x^{2}.(-x+3)+\frac{x.(-x+3)^{2}}{2} - {\frac{x^{3}}{2}-\frac{x^{3}}{8} } } \,dx }[/tex]
[tex]M_{y} = 2.\int\limits^2_0 {\frac{-9x^3}{8}+\frac{9x}{2} } \,dx }[/tex]
[tex]M_{y} = 2.({\frac{-9x^4}{32}+9x^{2})[/tex]
[tex]M_{y} = 2.({\frac{-9.2^4}{32}+9.2^{2}-0)[/tex]
[tex]M{y} =[/tex] 63
To find y-coordinate:
y = [tex]\frac{M_{x}}{m}[/tex]
y = [tex]\frac{18}{4}[/tex]
y = 4.5
Center mass coordinates for the lamina are (15.75,4.5)
