Answer:
The time taken is [tex]t = 0.0225 \ s[/tex]
Explanation:
From the question we are told that
The length of the wire is [tex]l = 4500 \ km = 4500000 \ m[/tex]
The refractive index is [tex]n_f = 1.5[/tex]
The velocity of the signal is mathematically represented as
[tex]v = \frac{c}{n_f }[/tex]
Where c is the speed of light with value [tex]c = 3.0 *10^{8} \ m/s[/tex]
substituting values
[tex]v = \frac{3.0 *10^{8}}{1.5}[/tex]
[tex]v = 2.0*10^{8} \ m/s[/tex]
The time taken is mathematically evaluated as
[tex]t = \frac{d}{v}[/tex]
substituting values
[tex]t = \frac{4500000}{2.0 *10^{8}}[/tex]
[tex]t = 0.0225 \ s[/tex]