. Suppose the weight of Chipotle burritos follows a normal distribution with mean of 450 grams, and variance of 100 grams2 . Define a random variable to be the weight of a randomly chosen burrito. (a) What is the probability that a Chipotle burrito weighs less than 445 grams? (3 points) (b) 20% of Chipotle burritos weigh more than what weig

Respuesta :

Complete Question

Suppose the weight of Chipotle burritos follows a normal distribution with mean of 450 grams, and variance of 100 grams2 . Define a random variable to be the weight of a randomly chosen burrito.

(a) What is the probability that a Chipotle burrito weighs less than 445 grams? (3 points)

(b) 20% of Chipotle burritos weigh more than what weight

Answer:

a

   [tex]P(X < 445 )= 0.3085[/tex]

b

  [tex]k = 458.42[/tex]

Step-by-step explanation:

From question we are told that

     The population mean is [tex]\mu = 450 \ g[/tex]

      The variance is [tex]var = 100 \ g^2[/tex]

      The  consider weight is  [tex]x = 445 \ g[/tex]

The  standard deviation is mathematically represented as

     [tex]\sigma = \sqrt{var}[/tex]

substituting values

     [tex]\sigma = \sqrt{ 100}[/tex]

     [tex]\sigma = 10[/tex]

Given that weight of Chipotle burritos follows a normal distribution the  the probability that a Chipotle burrito weighs less than x grams is mathematically represented as

        [tex]P(X < x ) = P ( \frac{X - \mu }{\sigma } < \frac{x - \mu }{\sigma } )[/tex]

Where  [tex]\frac{X - \mu }{\sigma }[/tex] is  equal to z (the standardized values of the random number X )

So

     [tex]P(X < x ) = P (Z < \frac{x - \mu }{\sigma } )[/tex]

substituting values

     [tex]P(X < 445 ) = P (Z < \frac{445 - 450 }{10} )[/tex]

      [tex]P(X < 445 ) = P (Z <-0.5 )[/tex]

Now from the normal distribution table  the value for [tex]P (Z <-0.5 )[/tex]  is  

      [tex]P(X < 445 ) = P (Z <-0.5 ) = 0.3085[/tex]

=>   [tex]P(X < 445 )= 0.3085[/tex]

Let the  probability  of the Chipotle burritos weighting more that k be 20% so  

       [tex]P(X > k ) = P ( \frac{X - \mu }{\sigma } > \frac{k - \mu }{\sigma } ) = 0.2[/tex]

=>    [tex]P (Z> \frac{k - \mu }{\sigma } ) = 0.2[/tex]

=>    [tex]P (Z> \frac{k - 450}{10 } ) = 0.2[/tex]

From the normal distribution table the value of z  for  [tex]P (Z> \frac{k - \mu }{\sigma } ) = 0.2[/tex] is  

    [tex]z = 0.8416[/tex]

=>   [tex]\frac{k - 450}{10 } = 0.8416[/tex]

=>   [tex]k = 458.42[/tex]

       

ACCESS MORE
EDU ACCESS
Universidad de Mexico