Respuesta :
Complete Question
Suppose the weight of Chipotle burritos follows a normal distribution with mean of 450 grams, and variance of 100 grams2 . Define a random variable to be the weight of a randomly chosen burrito.
(a) What is the probability that a Chipotle burrito weighs less than 445 grams? (3 points)
(b) 20% of Chipotle burritos weigh more than what weight
Answer:
a
[tex]P(X < 445 )= 0.3085[/tex]
b
[tex]k = 458.42[/tex]
Step-by-step explanation:
From question we are told that
The population mean is [tex]\mu = 450 \ g[/tex]
The variance is [tex]var = 100 \ g^2[/tex]
The consider weight is [tex]x = 445 \ g[/tex]
The standard deviation is mathematically represented as
[tex]\sigma = \sqrt{var}[/tex]
substituting values
[tex]\sigma = \sqrt{ 100}[/tex]
[tex]\sigma = 10[/tex]
Given that weight of Chipotle burritos follows a normal distribution the the probability that a Chipotle burrito weighs less than x grams is mathematically represented as
[tex]P(X < x ) = P ( \frac{X - \mu }{\sigma } < \frac{x - \mu }{\sigma } )[/tex]
Where [tex]\frac{X - \mu }{\sigma }[/tex] is equal to z (the standardized values of the random number X )
So
[tex]P(X < x ) = P (Z < \frac{x - \mu }{\sigma } )[/tex]
substituting values
[tex]P(X < 445 ) = P (Z < \frac{445 - 450 }{10} )[/tex]
[tex]P(X < 445 ) = P (Z <-0.5 )[/tex]
Now from the normal distribution table the value for [tex]P (Z <-0.5 )[/tex] is
[tex]P(X < 445 ) = P (Z <-0.5 ) = 0.3085[/tex]
=> [tex]P(X < 445 )= 0.3085[/tex]
Let the probability of the Chipotle burritos weighting more that k be 20% so
[tex]P(X > k ) = P ( \frac{X - \mu }{\sigma } > \frac{k - \mu }{\sigma } ) = 0.2[/tex]
=> [tex]P (Z> \frac{k - \mu }{\sigma } ) = 0.2[/tex]
=> [tex]P (Z> \frac{k - 450}{10 } ) = 0.2[/tex]
From the normal distribution table the value of z for [tex]P (Z> \frac{k - \mu }{\sigma } ) = 0.2[/tex] is
[tex]z = 0.8416[/tex]
=> [tex]\frac{k - 450}{10 } = 0.8416[/tex]
=> [tex]k = 458.42[/tex]