Answer:
The voltage induced in the coil is 1.25 V.
Explanation:
Given;
number of turns, N = 100 turns
cross sectional area of the copper coil, A = 0.1 m²
initial magnetic field, B₁ = 0.5 T
final magnetic field, B₂ = 1.00 T
duration of change in magnetic field, dt = 4 s
The induced emf in the coil is calculated as;
[tex]emf = -N\frac{\delta \phi}{\delta t} \\\\emf = - N (\frac{\delta B}{\delta t}) A\\\\emf = -N (\frac{B_1 -B_2}{\delta t} )A\\\\emf = N(\frac{B_2-B_1}{\delta t} )A\\\\emf = 100(\frac{1-0.5}{4} )0.1\\\\emf = 1.25 \ Volts[/tex]
Therefore, the voltage induced in the coil is 1.25 V.