Respuesta :
Answer:
39.94m/s.
Explanation:
Kinetic energy is expressed as KE = 1/2 mv² where;
m is the mass of the body
v is the velocity of the body.
For the heavier shell;
m = 5kg
KE gained = 100J
Substituting this values into the formula above to get the velocity v;
100 = 1/2 * 5 * v²
5v² = 200
v² = 200/5
v² = 40
v = √40
v = 6.32 m/s
Note that after the explosion, both body fragments will possess the same velocity.
For the lighter shell;
mass = 2.0kg and v = 6.32m/s
KE of the lighter shell = 1/2 * 2 * 6.32²
KE of the lighter shell = 6.32²
KE of the lighter shell= 39.94m/s
Hence, the lighter one gains a kinetic energy of 39.94m/s.
The gain in the kinetic energy of the smaller fragment is 249.64 J.
The given parameters;
- Mass of the shell, m = 7.0 kg
- Mass of one fragment, m₁ = 2.0 kg
- Mass of the second fragment, m₂ = 5.0 kg
- Kinetic energy of heavier fragment, K.E₁ = 100 J
The velocity of the heavier fragment is calculated as follows;
[tex]K.E = \frac{1}{2} mv^2\\\\mv^2 = 2K.E\\\\v^2 = \frac{2K.E}{m} \\\\v= \sqrt{\frac{2K.E}{m} } \\\\v = \sqrt{\frac{2 \times 100}{5} }\\\\v = 6.32 \ m/s[/tex]
Apply the principle of conservation of linear momentum to determine the velocity of the smaller fragment as;
[tex]m_1 u_1 + m_2 u_2 = v(m_1 + m_2)\\\\-6.32(5) \ + 2u_2 = 0(7)\\\\-31.6 + 2u_2 = 0\\\\2u_2 = 31.6\\\\u_2 = \frac{31.6}{2} \\\\u_2 = 15.8 \ m/s[/tex]
The gain in the kinetic energy of the smaller fragment is calculated as follows;
[tex]K.E_2 = \frac{1}{2} mu_2^2\\\\K.E_2 = \frac{1}{2} \times 2 \times (15.8)^2\\\\K.E_2 = 249.64 \ J[/tex]
Thus, the gain in the kinetic energy of the smaller fragment is 249.64 J.
Learn more about conservation of linear momentum here: https://brainly.com/question/7538238