Given the wavelength of the corresponding emission line, calculate the equivalent radiated energy from n = 4 to n = 2 in both joules and electron volts. Also, calculate the frequency of the wave. λ (Á) = 4861, ƒ(Hz), E(J), E(eV)

Respuesta :

Explanation:

It is given that,

Initial orbit of electrons, [tex]n_i=4[/tex]

Final orbit of electrons, [tex]n_f=2[/tex]

We need to find energy, wavelength and frequency of the wave.

When atom make transition from one orbit to another, the energy of wave is given by :

[tex]E=-13.6(\dfrac{1}{n_f^2}-\dfrac{1}{n_i^2})[/tex]

Putting all the values we get :

[tex]E=-13.6(\dfrac{1}{(4)^2}-\dfrac{1}{(2)^2})\\\\E=2.55\ eV[/tex]

We know that : [tex]1\ eV=1.6\times 10^{-19}\ J[/tex]

So,

[tex]E=2.55\times 1.6\times 10^{-19}\\\\E=4.08\times 10^{-19}\ J[/tex]

Energy of wave in terms of frequency is given by :

[tex]E=hf[/tex]

[tex]f=\dfrac{E}{h}\\\\f=\dfrac{4.08\times 10^{-19}}{6.63\times 10^{-34}}\\\\f=6.14\times 10^{14}\ Hz[/tex]

Also, [tex]c=f\lambda[/tex]

[tex]\lambda[/tex] is wavelength

So,

[tex]\lambda=\dfrac{c}{f}\\\\\lambda=\dfrac{3\times 10^8}{6.14\times 10^{14}}\\\\\lambda=4.88\times 10^{-7}\ m\\\\\lambda=488\ nm[/tex]

Hence, this is the required solution.

f(Hz) = 6.17 × 10¹⁴

E(J) = 4.09 × 10⁻¹⁹

E(ev) = 2.56

ACCESS MORE
EDU ACCESS