Respuesta :
Answer:
The volume percent of graphite is 91.906 per cent.
Explanation:
The volume percent of graphite ([tex]\% V_{Gr}[/tex]) is determined by the following expression:
[tex]\%V_{Gr} = \frac{V_{Gr}}{V_{Gr}+V_{Fe}} \times 100\,\%[/tex]
[tex]\%V_{Gr} = \frac{1}{1+\frac{V_{Gr}}{V_{Fe}} }\times 100\,\%[/tex]
Where:
[tex]V_{Gr}[/tex] - Volume occupied by the graphite phase, measured in cubic centimeters.
[tex]V_{Fe}[/tex] - Volume occupied by the ferrite phase, measured in cubic centimeters.
The volume of each phase can be calculated in terms of its density and mass. That is:
[tex]V_{Gr} = \frac{m_{Gr}}{\rho_{Gr}}[/tex]
[tex]V_{Fe} = \frac{m_{Fe}}{\rho_{Fe}}[/tex]
Where:
[tex]m_{Gr}[/tex], [tex]m_{Fe}[/tex] - Masses of the graphite and ferrite phases, measured in grams.
[tex]\rho_{Gr}[/tex], [tex]\rho_{Fe}[/tex] - Densities of the graphite and ferrite phases, measured in grams per cubic centimeter.
Let substitute each volume in the definition of the volume percent of graphite:
[tex]\%V_{Gr} = \frac{1}{1 +\frac{\frac{m_{Gr}}{\rho_{Gr}} }{\frac{m_{Fe}}{\rho_{Fe}} } } \times 100\,\%[/tex]
[tex]\%V_{Gr} = \frac{1}{1+\left(\frac{m_{Gr}}{m_{Fe}} \right)\cdot \left(\frac{\rho_{Fe}}{\rho_{Gr}} \right)}\times 100\,\%[/tex]
Let suppose that 100 grams of cast iron are available, masses of each phase are now determined:
[tex]m_{Gr} = \frac{2.5}{100}\times (100\,g)[/tex]
[tex]m_{Gr} = 2.5\,g[/tex]
[tex]m_{Fe} = 100\,g - 2.5\,g[/tex]
[tex]m_{Fe} = 97.5\,g[/tex]
If [tex]m_{Gr} = 2.5\,g[/tex], [tex]m_{Fe} = 97.5\,g[/tex], [tex]\rho_{Fe} = 7.9\,\frac{g}{cm^{3}}[/tex] and [tex]\rho_{Gr} = 2.3\,\frac{g}{cm^{3}}[/tex], the volume percent of graphite is:
[tex]\%V_{Gr} = \frac{1}{1+\left(\frac{2.5\,gr}{97.5\,gr} \right)\cdot \left(\frac{7.9\,\frac{g}{cm^{3}} }{2.3\,\frac{g}{cm^{3}} } \right)} \times 100\,\%[/tex]
[tex]\% V_{Gr} = 91.906\,\%[/tex]
The volume percent of graphite is 91.906 per cent.