Respuesta :
Answer:
Use 62% - the equation is for the amount present at a given time. 0.62 = (1) e-kt -> ln(0.62)=-kt -> k = -ln(0.62)/t. I get k = .00117 hr-1 t(half) = 0.693/k = 590 hr.
HOPE THIS HELPS AND PLSSS MARK AS BRAINLIEST AND THNXX :)
The half-life is the time at which the substance's concentration is reduced by half of its initial amount. The half-life of a nuclide that lost its 38.0% mass is 590 hr. Thus, option C is correct.
What is half-life?
Half-life is the time required by a substance to get reduced to half of its initial concentration. The half-life of the substance can be determined by the rate constant.
Given,
The initial quantity of substance (A₀) = 100
Remaining quantity (At) = 10 - 38 = 62
Time elapse (t) = 407 hours
The rate constant (k) is calculated as:
ln (At ÷ A₀) = - kt
ln (62 ÷ 100) ÷ 407 hour = - k
-0.47803580094 ÷ 407 = - k
k = 0.00117453513
Now, half-life from rate constant (k) is calculated as:
[tex]\rm t ^{\frac{1}{2}}[/tex] = 0.693 ÷ k
[tex]\rm t ^{\frac{1}{2}}[/tex] = 0.693 ÷ 0.00117453513
[tex]\rm t ^{\frac{1}{2}}[/tex] = 590 hours
Therefore, option C. 590 hours is the half-life of the substance.
Learn more about half-life here:
https://brainly.com/question/16387602
#SPJ2