Respuesta :
Answer:
Explanation:
A )
electric field E = V / d where V is potential difference between plates separated by distance d .
putting the given values
E = 370 / .040 V / m
= 9250 V / m
B )
Force on charged particle of charge q in electric field E
F = q E
F = 2.4 x 10⁻⁹ x 9250
= 22200 x 10⁻⁹
= 222 x 10⁻⁷ N .
C ) since field is uniform , force will be constant
work done by electric field putting up this force
= force x displacement
= 222 x 10⁻⁷ x 40 x 10⁻³
= 888 x 10⁻⁹ J
D )
change in potential energy
= q ( V₁ - V₂ )
= 2.40 X 10⁻⁹ x 370
= 888 x 10⁻⁹ J .
(a) The magnitude of electric field in the region between the plates is 9,250 V/m.
(b) The magnitude of the force the field exerts on a particle with the given charge is 2.22 x 10⁻⁵ N.
(c) The work done by the field on the particle as it moves from the higher potential plate to the lower is [tex]8.88 \times 10^{-7} \ J[/tex].
(d) the change of the potential energy is [tex]8.88 \times 10^{-7} \ J[/tex].
The given parameters;
- distance between the two metal plates, d = 40 mm
- potential difference between the plates, V = 370 V
(a) The magnitude of electric field in the region between the plates is calculated as;
[tex]E = \frac{V}{d} \\\\E = \frac{370 }{40 \times 10^{-3} } \\\\E = 9,250 \ V/m[/tex]
(b) The magnitude of the force the field exerts on a particle with the given charge is calculated as follows;
F = Eq
F = 9,250 x 2.4 x 10⁻⁹
F = 2.22 x 10⁻⁵ N
(c) The work done by the field on the particle as it moves from the higher potential plate to the lower is calculated as follows;
[tex]W = Fd\\\\W = 2.22 \times 10^{-5} \times 40\times 10^{-3} \\\\W =8.88 \times 10^{-7} \ J[/tex]
(d) the change of the potential energy is calculated as;
[tex]\Delta U = q \Delta V\\\\\Delta U = q(V_1 - V_2)\\\\\\Delta U = 2.4 \times 10^{-9}(370)\\\\\Delta U = 8.88 \times 10^{-7} \ J[/tex]
Learn more here:https://brainly.com/question/13014987