Answer:
The sample needed is [tex]n =150[/tex]
Step-by-step explanation:
From the question we are told that
The margin of error is [tex]E = 0.08[/tex]
The confidence level is [tex]C = 95 \% = 0.95[/tex]
Given that the confidence level is 95% the level of significance is mathematically represented as
[tex]\alpha = 1 - 0.95[/tex]
[tex]\alpha = 0.05[/tex]
Next we obtain the critical value of [tex]\frac{\alpha }{2}[/tex] from the z-table , the value is [tex]Z_{\frac{\alpha }{2} } = 1.96[/tex]
The reason we are obtaining critical value of [tex]\frac{\alpha }{2}[/tex] instead of [tex]\alpha[/tex] is because
[tex]\alpha[/tex] represents the area under the normal curve where the confidence level interval ( [tex]1-\alpha[/tex] ) did not cover which include both the left and right tail while
[tex]\frac{\alpha }{2}[/tex] is just the area of one tail which what we required to calculate the margin of error
The sample size is mathematically represented as
[tex]n = [\frac{Z_{\frac{\alpha }{2} }}{E} ]^2 * \r p[1-\r p][/tex]
Here [tex]\r p[/tex] is sample proportion of people that supported her and we will assume this to be 50% = 0.5
So
[tex]n = [\frac{1.96}{ 0.08} ]^2 * [0.5 (1- 0.5)][/tex]
[tex]n =150[/tex]