Respuesta :
Answer:
5.23 C
Explanation:
The current in the wire is given by I = ε/R where ε = induced emf in the wire and R = resistance of wire.
Now, ε = -ΔΦ/Δt where ΔΦ = change in magnetic flux = AΔB and A = area of loop and ΔB = change in magnetic field intensity = B₂ - B₁
B₁ = 0.670 T and B₂ = 0 T
ΔB = B₂ - B₁ = 0 - 0.670 T = - 0.670 T
A = πD²/4 where D = diameter of circular loop = 13.2 cm = 0.132 m
A = π(0.132 m)²/4 = 0.01368 m² = `1.368 × 10⁻² m²
ε = -ΔΦ/Δt = -AΔB/Δt = -1.368 × 10⁻² m² × (-0.670 T)/Δt= 0.9166 × 10⁻² Tm²/Δt
Now, the resistance R of the circular wire R = ρl/A' where ρ = resistivity of copper wire = 1.68 x 10⁻⁸ Ω.m, l = length of wire = πD and A' = cross-sectional area of wire = πd²/4 where d = diameter of wire = 2.25 mm = 2.25 × 10⁻³ m
R = ρl/A' = 1.68 x 10⁻⁸ Ω.m × π × 0.132 m÷π(2.25 × 10⁻³ m)²/4 = 0.88704/5.0625 = 0.1752 × 10⁻² Ω = 1.752 × 10⁻³ Ω
So, I = ε/R = 0.9166 × 10⁻² Tm²/Δt1.752 × 10⁻³ Ω
IΔt = 0.9166 × 10⁻² Tm²/1.752 × 10⁻³ Ω = 0.5232 × 10 C
Since ΔQ = It = 5.232 C ≅ 5.23 C
So the charge is 5.23 C
The induced emf through wire depends on the current flow (indirectly with charge flow as well).
The value of charge moving past a point in the coil during its operations is 5.23 C.
What is the magnetic field?
The region in a space where a particle experiences some magnetic force, is known as the magnetic field.
Given data -
The diameter of the circular loop is, d = 13.2 cm = 0.132 m.
The change in magnetic field strength is, ΔB = 0.670 T.
The new diameter of the wire is, d' = 2.25 mm = 2.25 × 10³ m.
The resistivity of the wire is, [tex]\rho = 1.68 \times 10^{-8} \;\rm \Omega.m[/tex].
The current in the wire is given by the following expression,
I = ε/R
Here,
ε is the induced emf in the wire.
R is the resistance of the wire.
And the expression for the induced emf of the wire is given as,
ε = -ΔΦ/Δt
Here,
ΔΦ is the change in magnetic flux. And its expression is,
ε = A × ΔB
Here,
A is the area of the loop. And its value is, A = πd²/4.
Solving as,
A = π(0.132 m)²/4
A = 0.01368 m²
A = `1.368 × 10⁻² m²
Now, calculating the induced emf as,
ε = ΔΦ/Δt
ε = A × ΔB/Δt
ε = 1.368 × 10⁻² m² × (0.670 T)/Δt
ε = 0.9166 × 10⁻² Tm²/Δt
Now, the resistance R of the circular wire is,
R = ρ × L/A'
Here,
L is the length of the wire and its value is. L = πd .
And A' is the new cross-sectional area of wire,
A' = πd'²/4
So, the resistance is,
R = ρ × L/A'
R = 1.68 x 10⁻⁸ ×( π × 0.132 m) ÷ π(2.25 × 10⁻³ m)²/4 =
R = 0.88704/5.0625
R = 0.1752 × 10⁻² Ω
R = 1.752 × 10⁻³ Ω
Now, the current flow (I) in the wire is given as,
I = ε/R
I = 0.9166 × 10⁻² Tm²/Δt1.752 × 10⁻³ Ω
And obtaining the value of charge from the expression of current as,
Q = IΔt
Q = 0.9166 × 10⁻² Tm²/1.752 × 10⁻³ Ω
Q = 0.5232 × 10 C
Q = 5.23 C
Thus, we can conclude that the value of charge moving past a point in the coil during its operations is 5.23 C.
Learn more about the resistance of a wire here:
https://brainly.com/question/15067823