Respuesta :
Answer:
False
Step-by-step explanation:
3x2 is 6 and 6 +4 is not 0 it is ten 10 norder of operations
●✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎❀✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎●
Hi my lil bunny!
❧⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯☙
Lets do this step by step.
Simplify [tex]\frac{3x - 2}{x} -4[/tex].
To write -4 as a fraction with a common denominator, multiply by [tex]\frac{x}{x}[/tex]
[tex]\frac{3x - 2}{x} - 4 . \frac{x}{x} > 0[/tex]
Combine -4 and [tex]\frac{x}{x}[/tex].
[tex]\frac{3x - 2}{x} + \frac{-4x}{x} > 0[/tex]
Combine the numerators over the common denominator.
[tex]\frac{3x - 2 -4x}{x} > 0[/tex]
Subtract 4x from 3x.
[tex]\frac{-x -2}{x} > 0[/tex]
Factor -1 out of -x.
[tex]\frac{-(-x) -2}{x} >0[/tex]
Rewirte -2 as -1 (2).
[tex]\frac{-(x -1 (2)}{x} > 0[/tex]
Factor -1 out of - (x) - 1 (2).
[tex]\frac{-(x + 2)}{x} >0[/tex]
Simplify the Expression.
_______________
Rewrite - ( x + 2 ) as -1 ( x + 2 ) .
[tex]\frac{-1 ( x+ 2)}{x} > 0[/tex]
Move the negative in front of the fraction.
[tex]- \frac{x + 2}{x} > 0[/tex]
Then your going to find all the values where the expression switches from negative to positive by setting each factor equal to 0 and solving.
[tex]x = 0\\x + 2 = 0[/tex]
Subtract 2 from both sides of the equation.
[tex]x = -2[/tex]
Solve for each factor to find the values where the absolute value expression goes from negative to positive.
[tex]x = 0 \\x = -2[/tex]
Consolidate the solutions.
[tex]x = 0, -2[/tex]
________________
Find the domain of [tex]\frac{3x - 2}{x} -4[/tex]
_________________
Set the denominator in [tex]\frac{3x - 2}{x}[/tex] equal to 0 to find where the expression is undefined.
[tex]x = 0[/tex]
The domain is all values of x that make the expression defined.
( - ∞, 0 ) ∪ ( 0 , ∞)
Use each root to create test intervals.
[tex]x < -2 \\-2 < x < 0 \\x > 0[/tex]
|Choose a test value from each interval and plug this value into the original inequality to determine which intervals satisfy the inequality.|
Test a value on the interval -2 < x < 0 to see if it makes the inequality true.
Ans : True
Test a value on the interval x > 0 to see if it makes the inequality true.
Ans : False
Test a value on the interval x < -2 to see if it makes the inequality true.
Ans : False
Compare the intervals to determine which ones satisfy the original inequality.
[tex]x < -2 = False\\-2 < x < 0 = True\\x > 0 = False[/tex]
The solution consists of all of the true intervals.
[tex]-2 < x < 0[/tex]
The result can be shown in multiple forms.
Inequality Form: [tex]-2 < x< 0[/tex]
Interval Notation: [tex]( -2 , 0 )[/tex]
❧⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯☙
●✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎❀✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎●
Hope this helped you.
Could you maybe give brainliest..?
❀*May*❀

