Answer:
[tex]3x + 13y = 14[/tex]
[tex]6x + 11y = -2[/tex]
Step-by-step explanation:
See Attachment for complete question
To determine which of the options has (-4,2) as its solution; we have to test each linear combination until we arrive at an answer;
Given that
[tex](x,y) = (-4,2)[/tex]
Testing Option A
[tex]3x + 13y = 14[/tex]
[tex]6x + 11y = -2[/tex]
Substitute [tex]x = -4[/tex] and [tex]y = 2[/tex] in [tex]3x + 13y = 14[/tex]
[tex]3(-4) + 13(2) = 14[/tex]
Open Brackets
[tex]-12 + 26 = 14[/tex]
[tex]14 = 14[/tex]
Substitute [tex]x = -4[/tex] and [tex]y = 2[/tex] in [tex]6x + 11y = -2[/tex]
[tex]6(-4) + 11(2) = -2[/tex]
Open Brackets
[tex]-24 + 22 = 2[/tex]
[tex]2 = 2[/tex]
In both cases, the expression on the right hand side equates to that on the left hand side;
Hence, there's no need to check for other options.