Answer:
[tex]148~ATP[/tex]
Explanation:
In case, we can start with the structure of [tex]CH_3(CH_2)_2_0CO_2H[/tex]. When we draw the molecule, we will obtain a total amount of 22 carbons. So, in order to calculate the total amount of ATP we have to make several questions:
How many Acetyl CoA is produced?
To calculate the total Acetyl Coa we have to use the equation:
[tex]Number~of~Acetyl~Coa=\frac{n}{2}[/tex], where n is the amount of carbons, so:
[tex]Number~of~Acetyl~Coa=\frac{22}{2}=11~carbons[/tex]
How many rounds take place?
To calculate the rounds we have to use the equation:
[tex]Number~of~rounds=\frac{n}{2}-1[/tex], where n is the amount of carbons, so:
[tex]Number~of~Acetyl~Coa=\frac{22}{2}-1=10~carbons[/tex]
How many [tex]FADH_2[/tex] and [tex]NADH[/tex] are produced for this fatty acid?
For each round, we will have 1 [tex]FADH_2[/tex] and 1 [tex]NADH[/tex], if we have 10 rounds. In total, we will have 10
How many ATP are formed?
The ATP would be formed in the electron transport chain and each coenzyme will have a different yield of ATP. So for the total calculation, we have to keep in mind the following relationships:
-) [tex]1~FADH_2~=~1.5~ATP [/tex]
-) [tex]1~NADH~=~2.5~ATP [/tex]
-) [tex]Acetyl~CoA~=~10~ATP[/tex]
So, know we can do the total calculation:
[tex](10*1.5)+(10*2.5)+(11*10)=150[/tex]
We have to subtract "2 ATP" molecules that correspond to the activation of the fatty acid, so:
[tex]150-2=148~ATP[/tex]
In total, we will have 148 ATP.
See figure 1
I hope it helps!