Respuesta :
Answer:
z(max) = 650 $
x₁ = 10 units
x₂ = 15 units
Step-by-step explanation:
That is a linear programming problem, we will use a simplex method to solve it
Formulation:
Let´s call x₁ number of chairs and x₂ number of tables then :
Item (in hours) cutting assembly finishing Profit ($)
Chairs (x₁) 1 2 1 20
Tables (x₂) 2 1 1 30
Availability 40 42 25
Objective Function
z = 20*x₁ + 30x₂ ( to maximize) subject to:
x₁ + 2x₂ ≤ 40
2x₁ + x₂ ≤ 42
x₁ + x₂ ≤ 25
x₁ , x₂ >= 0
Using excel or any other software we find:
z(max) = 650
x₁ = 10
x₂ = 15
The chairs and tables manufactured by the factory is an illustration of linear programming, where the maximum revenue is 674
Let x represent chairs, and y represent tables
So, the given parameters are:
Cutting:
- Chairs: 1 hour
- Table: 2 hours
- Hour available: 40
So, the constraint is:
[tex]\mathbf{x + 2y \le 40}[/tex]
Assembly:
- Chairs: 2 hours
- Table: 1 hour
- Hour available: 42
So, the constraint is:
[tex]\mathbf{2x + y \le 42}[/tex]
Finishing:
- Chairs: 1 hour
- Table: 1 hour
- Hour available: 25
So, the constraint is:
[tex]\mathbf{x + y \le 25}[/tex]
The unit profit on the items are:
- Chairs: $20
- Table: $30
So, the objective function to maximize is:
[tex]\mathbf{Max\ z = 20x + 30y}[/tex]
And the constraints are:
[tex]\mathbf{x + 2y \le 40}[/tex]
[tex]\mathbf{2x + y \le 42}[/tex]
[tex]\mathbf{x + y \le 25}[/tex]
[tex]\mathbf{x,y \ge 0}[/tex]
Using graphical method (see attachment for graph), we have the following feasible points:
[tex]\mathbf{(x,y) = \{(10,15),\ (17,8),\ (14.67, 12.67)\}}[/tex]
Calculate the objective function using the feasible points.
[tex]\mathbf{z = 20 \times 10 + 30 \times 15}[/tex]
[tex]\mathbf{z = 650}[/tex]
[tex]\mathbf{z = 20 \times 17 + 30 \times 8}[/tex]
[tex]\mathbf{z = 580}[/tex]
[tex]\mathbf{z = 20 \times 14.67+ 30 \times 12.67}[/tex]
[tex]\mathbf{z = 673.5}[/tex]
Approximate
[tex]\mathbf{z = 674}[/tex]
Hence, the maximum revenue is 674
Read more about linear programming at:
https://brainly.com/question/14225202
