Respuesta :

Answer:

csc θ + cot θ

From trigonometric identities

[tex] \csc(θ) = \frac{1}{ \sin(θ) } [/tex]

And

[tex] \cot(θ) = \frac{ \cos(θ) }{ \sin(θ) } [/tex]

So we have

[tex] \frac{1}{ \sin(θ) } + \frac{ \cos(θ) }{ \sin(θ) } [/tex]

Find the LCM

The LCM is sin θ

So we have

[tex] \frac{1}{ \sin(θ) } + \frac{ \cos(θ) }{ \sin(θ) } = \frac{1 + \cos(θ) }{ \sin(θ) } [/tex]

And

[tex] \frac{1 + \cos(θ) }{ \sin(θ) } = \cot( \frac{θ}{2} ) [/tex]

So we have the final answer as

[tex] \cot( \frac{θ}{2} ) [/tex]

Hope this helps you

RELAXING NOICE
Relax