Answer:
csc θ + cot θ
From trigonometric identities
[tex] \csc(θ) = \frac{1}{ \sin(θ) } [/tex]
And
[tex] \cot(θ) = \frac{ \cos(θ) }{ \sin(θ) } [/tex]
So we have
[tex] \frac{1}{ \sin(θ) } + \frac{ \cos(θ) }{ \sin(θ) } [/tex]
Find the LCM
The LCM is sin θ
So we have
[tex] \frac{1}{ \sin(θ) } + \frac{ \cos(θ) }{ \sin(θ) } = \frac{1 + \cos(θ) }{ \sin(θ) } [/tex]
And
[tex] \frac{1 + \cos(θ) }{ \sin(θ) } = \cot( \frac{θ}{2} ) [/tex]
So we have the final answer as
[tex] \cot( \frac{θ}{2} ) [/tex]
Hope this helps you