An article reports that when each football helmet in a random sample of 34 suspension-type helmets was subjected to a certain impact test, 24 showed damage. Let p denote the proportion of all helmets of this type that would show damage tested in the prescribed manner.

Required:
a. Calculate a 99% Cl for p.
b. What sample size would be required for the width of a 99% Cl to beat most .10, irrespective of p ?

Respuesta :

Answer:

a

    [tex]0.5043 < p <0.9075[/tex]

b

   [tex]n = 24[/tex]

Step-by-step explanation:

From the question we are told that

    The sample size is  n =  34

    The  number of damaged helmets is  x  =  24

Now the proportion of damaged helmets is mathematically represented as

      [tex]\r p = \frac{k}{n }[/tex]

substituting values

     [tex]\r p = \frac{24}{34 }[/tex]

    [tex]\r p = 0.7059[/tex]

Given that the confidence level is 99% the level of significance can be evaluated as

     [tex]\alpha = 100 - 99[/tex]

     [tex]\alpha = 1[/tex]%

    [tex]\alpha = 0.01[/tex]

Next we obtain the critical value of  [tex]\frac{\alpha }{2}[/tex]  from the normal distribution table, the value is  [tex]Z_{\frac{\alpha }{2} } = 2.58[/tex]

The reason we are obtaining critical values of   [tex]\frac{\alpha }{2}[/tex] instead of   [tex]\alpha[/tex] is because  

[tex]\alpha[/tex] represents the area under the normal curve where the confidence level interval (  [tex]1-\alpha[/tex]) did not cover which include both the left and right tail while  

[tex]\frac{\alpha }{2}[/tex]is just the area of one tail which what we required to calculate the margin of error

   The margin of error is mathematically represented as

     [tex]MOE = Z_{\frac{\alpha }{2} } * \sqrt{\frac{\r p ( 1 - \r p)}{n} }[/tex]

substituting values

      [tex]MOE = 2.58 * \sqrt{\frac{ 0.7059 ( 1 - 0.7059)}{34} }[/tex]

     [tex]MOE =0.2016[/tex]

The 99% confidence interval for p is mathematically represented as

      [tex]p-MOE < p < p + MOE[/tex]

substituting values

       [tex]0.7059 - 0.2016 < p <0.7059 + 0.2016[/tex]

      [tex]0.5043 < p <0.9075[/tex]

The  sample size required for the width of a 99% Cl to beat most 0.10, irrespective of p ? is mathematically represented as  

     [tex]n \ge \frac{ Z_{\frac{\alpha }{2} } * \sqrt{\r p (1- \r p )} }{\frac{\sigma }{2} }[/tex]

Here  [tex]\sigma = 0.10[/tex]  telling  us that the deviation from the sample proportion is  set to 0.10 irrespective of the value of  [tex]\r p[/tex]

so the  sample size for this condition is

    [tex]n \ge \frac{ 2.58 * \sqrt{ 0.7059 (1- 0.7059)} }{\frac{0.10 }{2} }[/tex]

    [tex]n \ge 23.51[/tex]

=>   [tex]n = 24[/tex]

ACCESS MORE
EDU ACCESS