Respuesta :
Answer:
The pressure at point 2 is [tex]P_2 = 254.01 kPa[/tex]
Explanation:
From the question we are told that
The speed at point 1 is [tex]v_1 = 3.57 \ m/s[/tex]
The gauge pressure at point 1 is [tex]P_1 = 68.7kPa = 68.7*10^{3}\ Pa[/tex]
The density of water is [tex]\rho = 1000 \ kg/m^3[/tex]
Let the height at point 1 be [tex]h_1[/tex] then the height at point two will be
[tex]h_2 = h_1 - 18.5[/tex]
Let the diameter at point 1 be [tex]d_1[/tex] then the diameter at point two will be
[tex]d_2 = 2 * d_1[/tex]
Now the continuity equation is mathematically represented as
[tex]A_1 v_1 = A_2 v_2[/tex]
Here [tex]A_1 , A_2[/tex] are the area at point 1 and 2
Now given that the are is directly proportional to the square of the diameter [i.e [tex]A= \frac{\pi d^2}{4}[/tex]]
which can represent as
[tex]A \ \ \alpha \ \ d^2[/tex]
=> [tex]A = c d^2[/tex]
where c is a constant
so [tex]\frac{A_1}{d_1^2} = \frac{A_2}{d_2^2}[/tex]
=> [tex]\frac{A_1}{d_1^2} = \frac{A_2}{4d_1^2}[/tex]
=> [tex]A_2 = 4 A_1[/tex]
Now from the continuity equation
[tex]A_1 v_1 = 4 A_1 v_2[/tex]
=> [tex]v_2 = \frac{v_1}{4}[/tex]
=> [tex]v_2 = \frac{3.57}{4}[/tex]
[tex]v_2 = 0.893 \ m/s[/tex]
Generally the Bernoulli equation is mathematically represented as
[tex]P_1 + \frac{1}{2} \rho v_1^2 + \rho * g * h_1 = P_2 + \frac{1}{2} \rho v_2^2 + \rho * g * h_2[/tex]
So
[tex]P_2 = \rho * g (h_1 -h_2 )+P_1 + \frac{1}{2} * \rho (v_1^2 -v_2 ^2 )[/tex]
=> [tex]P_2 = \rho * g (h_1 -(h_1 -18.3) + P_1 + \frac{1}{2} * \rho (v_1^2 -v_2 ^2 )[/tex]
substituting values
[tex]P_2 = 1000 * 9.8 (18.3) )+ 68.7*10^{3} + \frac{1}{2} * 1000 ((3.57)^2 -0.893 ^2 )[/tex]
[tex]P_2 = 254.01 kPa[/tex]