Respuesta :
Answer:
a
[tex]P(X = 10 ) = 0.0096[/tex]
b
[tex]P(X = 10 ) = 0.0085[/tex]
c
Option A is correct
Step-by-step explanation:
From the question we are told that
The sample size is n = 15
The probability of success is [tex]p = 0.35[/tex]
The number of success we are considering is r = 10
Now the probability of failure is mathematically evaluated as
[tex]q = 1- p[/tex]
substituting value
[tex]q = 1- 0.35[/tex]
[tex]q = 0.65[/tex]
Now using the binomial distribution to find the probability of exactly 10 successes we have that
[tex]P(X = r ) = [\left n } \atop {r}} \right. ] * p^r * q^{n- r}[/tex]
substituting values
[tex]P(X = 10 ) = [\left 15 } \atop {10}} \right. ] * p^{10}* q^{15- 10}[/tex]
Where [tex][\left 15 } \atop {10}} \right. ][/tex] mean 15 combination 10 which is evaluated with a calculator to obtain
[tex][\left 15 } \atop {10}} \right. ] = 3003[/tex]
So
[tex]P(X = 10 ) = 3003 * 0.35 ^{10}* 0.65^{15- 10}[/tex]
[tex]P(X = 10 ) = 0.0096[/tex]
Now using the normal distribution to approximate the probability of exactly 10 successes, we have that
[tex]P(X = r ) = P( r < X < r )[/tex]
Applying continuity correction
[tex]P(X = r ) = P( r -0.5 < X < r +0.5)[/tex]
substituting values
[tex]P(X = 10) = P( 10-0.5 < X < 10+0.5)[/tex]
[tex]P(X = 10 ) = P( 9.5 < X < 10.5)[/tex]
Standardizing
[tex]P(X = r ) = P( \frac{9.5 - \mu }{\sigma } < \frac{X - \mu }{\sigma } < \frac{10.5 - \mu}{\sigma } )[/tex]
The where [tex]\mu[/tex] is the mean which is mathematically represented as
[tex]\mu = n * p[/tex]
substituting values
[tex]\mu = 15 * 0.35[/tex]
[tex]\mu = 5.25[/tex]
The standard deviation is evaluated as
[tex]\sigma = \sqrt{n * p * q }[/tex]
substituting values
[tex]\sigma = \sqrt{15 * 0.35 * 0.65 }[/tex]
[tex]\sigma = 1.8473[/tex]
Thus
[tex]P(X = 10 ) = P( \frac{9.5 - 5.25 }{1.8473 } < \frac{X - 5.25 }{1.8473 } < \frac{10.5 - 5.25}{1.8473 } )[/tex]
[tex]P(X = 10 ) = P( 2.30 < Z < 2.842 )[/tex]
[tex]P(X = 10 ) = P(Z < 2.842 ) - P(Z < 2.30 )[/tex]
From the normal distribution table we obtain the [tex]P(Z < 2.841)[/tex] as
[tex]P(Z < 2.841) = 0.99775[/tex]
And the [tex]P(Z < 2.30)[/tex]
[tex]P(Z < 2.30) = 0.98928[/tex]
There value can also be obtained from a probability of z calculator at (Calculator dot net website)
So
[tex]P(X = 10) = 0.99775 - 0.98928[/tex]
[tex]P(X = 10 ) = 0.0085[/tex]
Looking at the calculated values for question a and b we see that the values are fairly different.
