Looks like the function on the right hand side is
[tex]f(t)=\begin{cases}1&\text{for }t<4\\-1&\text{for }t\ge4\end{cases}[/tex]
We can write it in terms of the Heaviside function,
[tex]h(t-a)=\begin{cases}1&\text{for }t\ge a\\0&\text{for }t>a\end{cases}[/tex]
as
[tex]f(t)=h(t)-2h(t-4)[/tex]
Now for the ODE: take the Laplace transform of both sides:
[tex]y'(t)+y(t)=f(t)[/tex]
[tex]\implies s Y(s)-y(0)+Y(s)=\dfrac{1-2e^{-4s}}s[/tex]
Solve for Y(s), then take the inverse transform to solve for y(t):
[tex](s+1)Y(s)=\dfrac{1-e^{-4s}}s[/tex]
[tex]Y(s)=\dfrac{1-e^{-4s}}{s(s+1)}[/tex]
[tex]Y(s)=(1-e^{-4s})\left(\dfrac1s-\dfrac1{s+1}\right)[/tex]
[tex]Y(s)=\dfrac1s-\dfrac{e^{-4s}}s-\dfrac1{s+1}+\dfrac{e^{-4s}}{s+1}[/tex]
[tex]\implies y(t)=1-h(t-4)-e^{-t}+e^{-(t-4)}h(t-4)[/tex]
[tex]\boxed{y(t)=1-e^{-t}-h(t-4)(1-e^{-(t-4)})}[/tex]