Respuesta :
Answer:
A) V_rms = 29 V
B) Vav = 0 V
Explanation:
A) We are told that;
V = V_o cos ωt
voltage amplitude; V = V_o = 41.0V
Now, the formula for the root-mean-square potential difference Vrms is given as;
V_rms = V/√2
Thus plugging in relevant values, we have;
V_rms = 41/√2
V_rms = 29 V
B) Due to the fact that the voltage is sinusoidal from the given V = V_o cos ωt, we can say that the average potential difference Vav between the two terminals of the power supply would be zero.
Thus; Vav = 0 V
A. The root-mean-square potential difference ([tex]V_{rms}[/tex]) is equal to 28.99 Volts.
B. For this voltage with a sinusoidal waveform (sine wave), the average potential difference ([tex]V_{ave}[/tex]) between the two terminals of the power supply is equal to zero (0).
Given the following data:
- Voltage amplitude = 41.0 Volts.
The voltage across the terminals of an alternating current (AC) power supply varies directly with time according to the equation:
[tex]V_0 = V_0cos(t)[/tex]
A. To find the root-mean-square potential difference ([tex]V_{rms}[/tex]):
Mathematically, root-mean-square for voltage in an alternating current (AC) power supply (circuit) is given by the formula:
[tex]V_{rms} = \frac{V}{\sqrt{2} }[/tex]
Substituting the given parameter into the formula, we have;
[tex]V_{rms} = \frac{41}{\sqrt{2} }\\\\V_{rms} = \frac{41}{1.4142 }\\\\V_{rms} = 28.99\; Volts[/tex]
B. To find the average potential difference ([tex]V_{ave}[/tex]) between the two terminals of the power supply:
For this voltage with a sinusoidal waveform (sine wave), the average potential difference ([tex]V_{ave}[/tex]) between the two terminals of the power supply is equal to zero (0).
Read more: https://brainly.com/question/15121836