Respuesta :
Answer:
D) Fail to reject the null hypothesis. There is insufficient evidence to conclude that the mean is greater than $100.
Step-by-step explanation:
We are given that the owner of a shoe store randomly selected 10 receipts and identified the total spent by each customer. The totals (rounded to the nearest dollar) are given below;
X: 125, 99, 219, 65, 109, 89, 79, 119, 95, 135.
Let [tex]\mu[/tex] = average customer bought worth of shoes.
So, Null Hypothesis, [tex]H_0[/tex] : [tex]\mu \leq[/tex] $100 {means that the mean is smaller than or equal to $100}
Alternate Hypothesis, [tex]H_A[/tex] : [tex]\mu[/tex] > $100 {means that the mean is greater than $100}
The test statistics that will be used here is One-sample t-test statistics because we don't know about population standard deviation;
T.S. = [tex]\frac{\bar X-\mu}{\frac{s}{\sqrt{n} } }[/tex] ~ [tex]t_n_-_1[/tex]
where, [tex]\bar X[/tex] = sample mean = [tex]\frac{\sum X}{n}[/tex] = $113.4
s = sample standard deviation = [tex]\sqrt{\frac{\sum (X-\bar X)^{2} }{n-1} }[/tex] = $42.78
n = sample of receipts = 10
So, the test statistics = [tex]\frac{113.4-100}{\frac{42.78}{\sqrt{10} } }[/tex] ~ [tex]t_9[/tex]
= 0.991
The value of t-test statistics is 0.991.
Now, at a 0.05 level of significance, the t table gives a critical value of 1.833 at 9 degrees of freedom for the right-tailed test.
Since the value of our test statistics is less than the critical value of t as 0.991 < 1.833, so we have insufficient evidence to reject our null hypothesis as it will not fall in the rejection region.
Therefore, we conclude that the mean is smaller than or equal to $100.