Respuesta :
Answer:
The infinite series [tex]\displaystyle \sum\limits_{k = 1}^{\infty} \frac{8/k}{\sqrt{k + 7}}[/tex] indeed converges.
Step-by-step explanation:
The limit comparison test for infinite series of positive terms compares the convergence of an infinite sequence (where all terms are greater than zero) to that of a similar-looking and better-known sequence (for example, a power series.)
For example, assume that it is known whether [tex]\displaystyle \sum\limits_{k = 1}^{\infty} b_k[/tex] converges or not. Compute the following limit to study whether [tex]\displaystyle \sum\limits_{k = 1}^{\infty} a_k[/tex] converges:
[tex]\displaystyle \lim\limits_{k \to \infty} \frac{a_k}{b_k}\; \begin{tabular}{l}\\ $\leftarrow$ Series whose convergence is known\end{tabular}[/tex].
- If that limit is a finite positive number, then the convergence of the these two series are supposed to be the same.
- If that limit is equal to zero while [tex]a_k[/tex] converges, then [tex]b_k[/tex] is supposed to converge, as well.
- If that limit approaches infinity while [tex]a_k[/tex] does not converge, then [tex]b_k[/tex] won't converge, either.
Let [tex]a_k[/tex] denote each term of this infinite Rewrite the infinite sequence in this question:
[tex]\begin{aligned}a_k &= \frac{8/k}{\sqrt{k + 7}}\\ &= \frac{8}{k\cdot \sqrt{k + 7}} = \frac{8}{\sqrt{k^2\, (k + 7)}} = \frac{8}{\sqrt{k^3 + 7\, k^2}} \end{aligned}[/tex].
Compare that to the power series [tex]\displaystyle \sum\limits_{k = 1}^{\infty} b_k[/tex] where [tex]\displaystyle b_k = \frac{1}{\sqrt{k^3}} = \frac{1}{k^{3/2}} = k^{-3/2}[/tex]. Note that this
Verify that all terms of [tex]a_k[/tex] are indeed greater than zero. Apply the limit comparison test:
[tex]\begin{aligned}& \lim\limits_{k \to \infty} \frac{a_k}{b_k}\; \begin{tabular}{l}\\ $\leftarrow$ Series whose convergence is known\end{tabular}\\ &= \lim\limits_{k \to \infty} \frac{\displaystyle \frac{8}{\sqrt{k^3 + 7\, k^2}}}{\displaystyle \frac{1}{{\sqrt{k^3}}}}\\ &= 8\left(\lim\limits_{k \to \infty} \sqrt{\frac{k^3}{k^3 + 7\, k^2}}\right) = 8\left(\lim\limits_{k \to \infty} \sqrt{\frac{1}{\displaystyle 1 + (7/k)}}\right)\end{aligned}[/tex].
Note, that both the square root function and fractions are continuous over all real numbers. Therefore, it is possible to move the limit inside these two functions. That is:
[tex]\begin{aligned}& \lim\limits_{k \to \infty} \frac{a_k}{b_k}\\ &= \cdots \\ &= 8\left(\lim\limits_{k \to \infty} \sqrt{\frac{1}{\displaystyle 1 + (7/k)}}\right)\\ &= 8\left(\sqrt{\frac{1}{\displaystyle 1 + \lim\limits_{k \to \infty} (7/k)}}\right) \\ &= 8\left(\sqrt{\frac{1}{1 + 0}}\right) \\ &= 8 \end{aligned}[/tex].
Because the limit of this ratio is a finite positive number, it can be concluded that the convergence of [tex]\displaystyle a_k &= \frac{8/k}{\sqrt{k + 7}}[/tex] and [tex]\displaystyle b_k = \frac{1}{\sqrt{k^3}}[/tex] are the same. Because the power series [tex]\displaystyle \sum\limits_{k = 1}^{\infty} b_k[/tex] converges, (by the limit comparison test) the infinite series [tex]\displaystyle \sum\limits_{k = 1}^{\infty} a_k[/tex] should also converge.