Respuesta :
Answer:
A 98% confidence interval estimate for the difference in mean speed of the films is [-0.042, 0.222].
Step-by-step explanation:
We are given that Eight samples of each film thickness are manufactured in a pilot production process, and the film speed (in microjoules per square inch) is measured.
For the 25-mil film, the sample data result is: Mean Standard deviation 1.15 0.11 and For the 20-mil film the data yield: Mean Standard deviation 1.06 0.09.
Firstly, the pivotal quantity for finding the confidence interval for the difference in population mean is given by;
P.Q. = [tex]\frac{(\bar X_1 -\bar X_2)-(\mu_1- \mu_2)}{s_p \times \sqrt{\frac{1}{n_1}+\frac{1}{n_2} } }[/tex] ~ [tex]t__n_1_+_n_2_-_2[/tex]
where, [tex]\bar X_1[/tex] = sample mean speed for the 25-mil film = 1.15
[tex]\bar X_1[/tex] = sample mean speed for the 20-mil film = 1.06
[tex]s_1[/tex] = sample standard deviation for the 25-mil film = 0.11
[tex]s_2[/tex] = sample standard deviation for the 20-mil film = 0.09
[tex]n_1[/tex] = sample of 25-mil film = 8
[tex]n_2[/tex] = sample of 20-mil film = 8
[tex]\mu_1[/tex] = population mean speed for the 25-mil film
[tex]\mu_2[/tex] = population mean speed for the 20-mil film
Also, [tex]s_p =\sqrt{\frac{(n_1-1)s_1^{2}+ (n_2-1)s_2^{2}}{n_1+n_2-2} }[/tex] = [tex]\sqrt{\frac{(8-1)\times 0.11^{2}+ (8-1)\times 0.09^{2}}{8+8-2} }[/tex] = 0.1005
Here for constructing a 98% confidence interval we have used a Two-sample t-test statistics because we don't know about population standard deviations.
So, 98% confidence interval for the difference in population means, ([tex]\mu_1-\mu_2[/tex]) is;
P(-2.624 < [tex]t_1_4[/tex] < 2.624) = 0.98 {As the critical value of t at 14 degrees of
freedom are -2.624 & 2.624 with P = 1%}
P(-2.624 < [tex]\frac{(\bar X_1 -\bar X_2)-(\mu_1- \mu_2)}{s_p \times \sqrt{\frac{1}{n_1}+\frac{1}{n_2} } }[/tex] < 2.624) = 0.98
P( [tex]-2.624 \times {s_p \times \sqrt{\frac{1}{n_1}+\frac{1}{n_2} } }[/tex] < [tex]2.624 \times {s_p \times \sqrt{\frac{1}{n_1}+\frac{1}{n_2} } }[/tex] < ) = 0.98
P( [tex](\bar X_1-\bar X_2)-2.624 \times {s_p \times \sqrt{\frac{1}{n_1}+\frac{1}{n_2} } }[/tex] < ([tex]\mu_1-\mu_2[/tex]) < [tex](\bar X_1-\bar X_2)+2.624 \times {s_p \times \sqrt{\frac{1}{n_1}+\frac{1}{n_2} } }[/tex] ) = 0.98
98% confidence interval for ([tex]\mu_1-\mu_2[/tex]) = [ [tex](\bar X_1-\bar X_2)-2.624 \times {s_p \times \sqrt{\frac{1}{n_1}+\frac{1}{n_2} } }[/tex] , [tex](\bar X_1-\bar X_2)+2.624 \times {s_p \times \sqrt{\frac{1}{n_1}+\frac{1}{n_2} } }[/tex] ]
= [ [tex](1.15-1.06)-2.624 \times {0.1005 \times \sqrt{\frac{1}{8}+\frac{1}{8} } }[/tex] , [tex](1.15-1.06)+2.624 \times {0.1005 \times \sqrt{\frac{1}{8}+\frac{1}{8} } }[/tex] ]
= [-0.042, 0.222]
Therefore, a 98% confidence interval estimate for the difference in mean speed of the films is [-0.042, 0.222].
Since the above interval contains 0; this means that decreasing the thickness of the film doesn't increase the speed of the film.