Answer:
[tex]\large \boxed{\sf \ \ \ \dfrac{f(x)}{g(x)}=x+2-\dfrac{1}{x+1} \ \ \ }[/tex]
Step-by-step explanation:
Hello,
[tex]f(x)=x^2+3x+1\\\\g(x)=x+1\\\\\boxed{x}(x+1)=x^2+x \ \text{ and } \ \ f(x)-x(x+1)=2x+1\\\\\boxed{2}(x+1)=2x+2 \ \ \text{ and } \ \ 2x+1-2x-2=\boxed{-1} \ \ \text{so }\\\\f(x)=\boxed{(x+2)}(x+1)\boxed{-1} \ \ \text{ then }\\\\\dfrac{f(x)}{g(x)}=x+2-\dfrac{1}{x+1}[/tex]
Quotient is x + 2
Remainder is -1
Hope this helps.
Do not hesitate if you need further explanation.
Thank you