Respuesta :
Answer:
The area of the region between the two curves by integration over the x-axis is 9.9 square units.
Step-by-step explanation:
This case represents a definite integral, in which lower and upper limits are needed, which corresponds to the points where both intersect each other. That is:
[tex]x^{2} - 24 = 1[/tex]
Given that resulting expression is a second order polynomial of the form [tex]x^{2} - a^{2}[/tex], there are two real and distinct solutions. Roots of the expression are:
[tex]x_{1} = -5[/tex] and [tex]x_{2} = 5[/tex].
Now, it is also required to determine which part of the interval [tex](x_{1}, x_{2})[/tex] is equal to a number greater than zero (positive). That is:
[tex]x^{2} - 24 > 0[/tex]
[tex]x^{2} > 24[/tex]
[tex]x < -4.899[/tex] and [tex]x > 4.899[/tex].
Therefore, exists two sub-intervals: [tex][-5, -4.899][/tex] and [tex]\left[4.899,5\right][/tex]. Besides, [tex]x^{2} - 24 > y = 1[/tex] in each sub-interval. The definite integral of the region between the two curves over the x-axis is:
[tex]A = \int\limits^{-4.899}_{-5} [{1 - (x^{2}-24)]} \, dx + \int\limits^{4.899}_{-4.899} \, dx + \int\limits^{5}_{4.899} [{1 - (x^{2}-24)]} \, dx[/tex]
[tex]A = \int\limits^{-4.899}_{-5} {25-x^{2}} \, dx + \int\limits^{4.899}_{-4.899} \, dx + \int\limits^{5}_{4.899} {25-x^{2}} \, dx[/tex]
[tex]A = 25\cdot x \right \left|\limits_{-5}^{-4.899} -\frac{1}{3}\cdot x^{3}\left|\limits_{-5}^{-4.899} + x\left|\limits_{-4.899}^{4.899} + 25\cdot x \right \left|\limits_{4.899}^{5} -\frac{1}{3}\cdot x^{3}\left|\limits_{4.899}^{5}[/tex]
[tex]A = 2.525 -2.474+9.798 + 2.525 - 2.474[/tex]
[tex]A = 9.9\,units^{2}[/tex]
The area of the region between the two curves by integration over the x-axis is 9.9 square units.
![Ver imagen xero099](https://us-static.z-dn.net/files/d84/d1788c3e3e55a472136b2800e0bd9d3e.png)