Answer:
Quantity that will maximize profit=1000
Step-by-step explanation:
Assume quantity=x
Revenue=price*quantity
=(4200-6x)x
=4200x-6x^2
Marginal revenue(MR) =4200-12x
Cost(x)= 16000 + 600x − 1.8x2 + 0.004x3
Marginal cost(MC) =600-3.6x+0.012x^2
Marginal cost=Marginal revenue
600-3.6x+0.012x^2=4200-12x
600-3.6x+0.012x^2-4200+12x=0
0.012x^2-8.4x-3600=0
Solve the quadratic equation using
x= -b +or- √b^2-4ac/2a
a=0.012
b=-8.4
c=-3600
x=-(-8.4) +or- √(-8.4)^2- (4)(0.012)(-3600) / (2)(0.012)
= 8.4 +or- √70.56-(-172.8) / 0.024
= 8.4 +or- √70.56+172.8 / 0.024
= 8.4 +or- √243.36 / 0.024
= 8.4 +or- 15.6/0.024
= 8.4/0.024 +15.6/0.024
= 350+650
x=1000
OR
= 8.4/0.024 -15.6/0.024
= 350 - 650
= -300
x=1000 or -300
Quantity that maximises profits can not be negative
So, quantity that maximises profits=1000