Respuesta :
Answer:
Since the angular acceleration of the objects will be proportional to the torque (due to gravity) acting on them and they will all experience the same torque their accelerations will be inversely proportional to their moments of inertia:
I disk = 1/2 M R^2
I sphere = 2/5 M R^2
I shell = 2/3 M R^2
Thus the sphere will experience the greatest angular acceleration and reach the bottom first, and then be followed by the disk and the shell.
By conservation of energy they will all have the same kinetic energy when they reach the bottom of the ramp.
(a) The ranking of the objects in order of how they will finish the race is
solid sphere > disk > hollow spherical shell
(b) The ranking of the objects in order of kinetic energy is
solid sphere > disk > hollow spherical shell
The moment of inertia of each object is calculated as follows;
- disk: [tex]I = \frac{1} {2} MR^2[/tex]
- solid sphere: I = [tex]\frac{2}{5} MR^2[/tex]
- hollow spherical shell: I = [tex]\frac{2}{3} MR^2[/tex]
The angular momentum of the objects is calculated as follows;
[tex]L =I \omega \\\\\omega = \frac{L}{I}[/tex]
The object with the least moment of inertia is will have the highest speed.
The ranking of the objects in order of how they will finish the race;
solid sphere > disk > hollow
The kinetic energy of the objects is calculated as follows;
[tex]K.E = \frac{1}{2} I \omega ^2[/tex]
The ranking of the objects in order of kinetic energy;
solid sphere > disk > hollow
Learn more here:https://brainly.com/question/15076457