Respuesta :
Answer:
The solution to the given Initial - Value - Problem is [tex]y(t) = \frac{-1}{9} + \frac{1}{3}t + \frac{1}{9}e^{-3t} - [\frac{-1}{9} + \frac{1}{3}t - \frac{2}{9}e^{-3(t-1)}]u(t-1)[/tex]
Step-by-step explanation:
y' + 3y = f(t).................(1)
f(t) = t when 0 ≤ t < 1
f(t) = 0 when t ≥ 1
Step 1: Take the Laplace transform of the LHS of equation (1)
That is L(y' + 3y) = sY(s) + 3Y(s) = Y(s)[s + 3]..............(*)
Step 2: Get an expression for f(t)
For f(t) = t when 0 ≤ t < 1
f₁(t) = t (1 - u(t - 1)) ( there is a time shift of the unit step)
For f(t) = 0 when t ≥ 1
f₂(t) = 0(u(t-1))
f(t) = f₁(t) + f₂(t)
f(t) = t - t u(t-1)................(2)
Step 3: Taking the Laplace transform of equation (2)
[tex]F(s) = \frac{1}{s^2} - e^{-s} ( \frac{1}{s^2} + \frac{1}{s})[/tex]...............(**)
Step 4: Equating * and **
[tex]Y(s) [s + 3]=\frac{1}{s^2} - e^{-s} ( \frac{1}{s^2} + \frac{1}{s}) \\Y(s) = \frac{1}{s^2(s+3)} - e^{-s} ( \frac{1}{s^2(s+3)} + \frac{1}{s(s+3)})[/tex].......................(3)
Since y(t) is the solution we are looking for we need to find the Inverse Laplace Transform of equation (3) by first breaking every fraction into partial fraction:
[tex]\frac{1}{s^2 (s+3)} = \frac{-1}{9s} + \frac{1}{3s^2} + \frac{1}{9(s+3)}[/tex]
[tex]\frac{1}{s (s+3)} = \frac{1}{3s} + \frac{1}{3(s+3)}[/tex]
We can rewrite equation (3) by representing the fractions by their partial fractions.
[tex]Y(s) = \frac{-1}{9s} + \frac{1}{3s^2} + \frac{1}{9(s+3)} - e^{-s} [\frac{-1}{9s} + \frac{1}{3s^2} + \frac{1}{9(s+3)} + \frac{1}{3s} + \frac{1}{3(s+3)}]\\Y(s) = \frac{-1}{9s} + \frac{1}{3s^2} + \frac{1}{9(s+3)} - e^{-s}[\frac{2}{9s} + \frac{1}{3s^2} - \frac{2}{9(s+3)}][/tex]................(4)
step 5: Take the inverse Laplace transform of equation (4)
[tex]y(t) = \frac{-1}{9} + \frac{1}{3}t + \frac{1}{9}e^{-3t} - u(t-1)[\frac{2}{9} + \frac{1}{3}(t-1) - \frac{2}{9}e^{-3(t-1)}][/tex]
Simplifying the above equation:
[tex]y(t) = \frac{-1}{9} + \frac{1}{3}t + \frac{1}{9}e^{-3t} - [\frac{-1}{9} + \frac{1}{3}t - \frac{2}{9}e^{-3(t-1)}]u(t-1)[/tex]
The Laplace transform is use to solve the differential equation problem.
The solution for the given initial-value problem is,
[tex]y(t)=\dfrac{-1}{9}+\dfrac{-1}{3}t+\dfrac{1}{9}e^-3t-\left[\dfrac{-1}{9}+\dfrac{-1}{3}t+\dfrac{2}{9}e^{-3(t-1)}\right]u(t-1)[/tex]
Given:
The given initial value problem is [tex]y' + 3y = f(t)[/tex].
Consider the left hand side of the given equation.
[tex]y'+3y[/tex]
Take the Laplace transform.
[tex]L(y' + 3y) = sY(s) + 3Y(s) \\L(y' + 3y) = Y(s)[s + 3][/tex]
Consider the right hand side and get the expression for [tex]f(t)[/tex].
[tex]f(t) = t[/tex] when 0 ≤ t < 1
From time shift of the unit step
[tex]f_1(t) = t (1 - u(t - 1))[/tex]
For f(t) = 0 when t ≥ 1
Now,
[tex]f_2(t) = 0(u(t-1))f(t) = f_1(t) + f_2(t)f(t) = t - t u(t-1)[/tex]
Take the Laplace for above expression.
[tex]F(s)=\dfrac{1}{s^2}-e^{-s}\left(\dfrac{1}{s^2}+\dfrac{1}{s}\right)[/tex]
Now, the equate the above two equation.
[tex]Y(s)\left[s+3\right ]=\dfrac{1}{s^2}-e^{-s}\left(\dfrac{1}{s^2}+\dfrac{1}{s}\right)\\Y(s)=\dfrac {1}{(s^2(s+3))}-e^{-s}\left(\dfrac{1}{(s^2(s+3))}+\dfrac{1}{s(s+3)\right)}[/tex]
Find the inverse Laplace for the above equation.
[tex]\dfrac{1}{(s^2(s+3))}=\dfrac{-1}{9s}+\dfrac{1}{3s^2}+\dfrac{1}{9(s+3)}\\\dfrac{1}{(s(s+3))}=\dfrac{1}{3s}+\dfrac{1}{3(s+3)}[/tex]
Calculate the partial fraction of above equation.
[tex]Y(s)=\dfrac{-1}{9s}+\dfrac{1}{3s^2}+\dfrac{1}{9(s+3)}-e^{-s}\left[\dfrac{-1}{9s}+\dfrac{1}{3s^2}+\dfrac{1}{9(s+3)}+\dfrac{1}{3s}+\dfrac{1}{3(s+3)}\right]\\Y(s)=\dfrac{2}{9s}+\dfrac{1}{3s^2}+\dfrac{1}{9(s+3)}-e^{-s}\left[\dfrac{2}{9s}+\dfrac{1}{3s^2}-\dfrac{2}{9(s+3)}\right][/tex]
Take the inverse Laplace of the above equation.
[tex]y(t)=\dfrac{-1}{9}+\dfrac{-1}{3}t+\dfrac{1}{9}e^-3t-\left[\dfrac{-1}{9}+\dfrac{-1}{3}t+\dfrac{2}{9}e^{-3(t-1)}\right]u(t-1)[/tex]
Thus, the solution for the given initial-value problem is,
[tex]y(t)=\dfrac{-1}{9}+\dfrac{-1}{3}t+\dfrac{1}{9}e^-3t-\left[\dfrac{-1}{9}+\dfrac{-1}{3}t+\dfrac{2}{9}e^{-3(t-1)}\right]u(t-1)[/tex]
Learn more about what Laplace transformation is here:
https://brainly.com/question/14487937