Respuesta :
Answer:
C. [tex]Ca_3(PO_4)_2[/tex] will precipitate out first
the percentage of [tex]Ca^{2+}[/tex]remaining = 12.86%
Explanation:
Given that:
A solution contains:
[tex][Ca^{2+}] = 0.0440 \ M[/tex]
[tex][Ag^+] = 0.0940 \ M[/tex]
From the list of options , Let find the dissociation of [tex]Ag_3PO_4[/tex]
[tex]Ag_3PO_4 \to Ag^{3+} + PO_4^{3-}[/tex]
where;
Solubility product constant Ksp of [tex]Ag_3PO_4[/tex] is [tex]8.89 \times 10^{-17}[/tex]
Thus;
[tex]Ksp = [Ag^+]^3[PO_4^{3-}][/tex]
replacing the known values in order to determine the unknown ; we have :
[tex]8.89 \times 10 ^{-17} = (0.0940)^3[PO_4^{3-}][/tex]
[tex]\dfrac{8.89 \times 10 ^{-17}}{(0.0940)^3} = [PO_4^{3-}][/tex]
[tex][PO_4^{3-}] =\dfrac{8.89 \times 10 ^{-17}}{(0.0940)^3}[/tex]
[tex][PO_4^{3-}] =1.07 \times 10^{-13}[/tex]
The dissociation of [tex]Ca_3(PO_4)_2[/tex]
The solubility product constant of [tex]Ca_3(PO_4)_2[/tex] is [tex]2.07 \times 10^{-32}[/tex]
The dissociation of [tex]Ca_3(PO_4)_2[/tex] is :
[tex]Ca_3(PO_4)_2 \to 3Ca^{2+} + 2 PO_{4}^{3-}[/tex]
Thus;
[tex]Ksp = [Ca^{2+}]^3 [PO_4^{3-}]^2[/tex]
[tex]2.07 \times 10^{-33} = (0.0440)^3 [PO_4^{3-}]^2[/tex]
[tex]\dfrac{2.07 \times 10^{-33} }{(0.0440)^3}= [PO_4^{3-}]^2[/tex]
[tex][PO_4^{3-}]^2 = \dfrac{2.07 \times 10^{-33} }{(0.0440)^3}[/tex]
[tex][PO_4^{3-}]^2 = 2.43 \times 10^{-29}[/tex]
[tex][PO_4^{3-}] = \sqrt{2.43 \times 10^{-29}[/tex]
[tex][PO_4^{3-}] =4.93 \times 10^{-15}[/tex]
Thus; the phosphate anion needed for precipitation is smaller i.e [tex]4.93 \times 10^{-15}[/tex] in [tex]Ca_3(PO_4)_2[/tex] than in [tex]Ag_3PO_4[/tex] [tex]1.07 \times 10^{-13}[/tex]
Therefore:
[tex]Ca_3(PO_4)_2[/tex] will precipitate out first
To determine the concentration of [tex][Ca^+][/tex] when the second cation starts to precipitate ; we have :
[tex]Ksp = [Ca^{2+}]^3 [PO_4^{3-}]^2[/tex]
[tex]2.07 \times 10^{-33} = [Ca^{2+}]^3 (1.07 \times 10^{-13})^2[/tex]
[tex][Ca^{2+}]^3 = \dfrac{2.07 \times 10^{-33} }{(1.07 \times 10^{-13})^2}[/tex]
[tex][Ca^{2+}]^3 =1.808 \times 10^{-7}[/tex]
[tex][Ca^{2+}] =\sqrt[3]{1.808 \times 10^{-7}}[/tex]
[tex][Ca^{2+}] =0.00566[/tex]
This implies that when the second cation starts to precipitate ; the concentration of [tex][Ca^{2+}][/tex] in the solution is 0.00566
Therefore;
the percentage of [tex]Ca^{2+}[/tex] remaining = concentration remaining/initial concentration × 100%
the percentage of [tex]Ca^{2+}[/tex] remaining = 0.00566/0.0440 × 100%
the percentage of [tex]Ca^{2+}[/tex] remaining = 0.1286 × 100%
the percentage of [tex]Ca^{2+}[/tex]remaining = 12.86%