Answer:
[tex]\hat p=\frac{48}{64}= 0.75[/tex] represent the estimated proportion successfull
The standard error for this case is given by this formula:
[tex] SE= \sqrt{\frac{\hat p(1-\hat p)}{n}}[/tex]
And replacing we got:
[tex] SE= \sqrt{\frac{0.75*(1-0.75)}{64}}= 0.0541[/tex]
Step-by-step explanation:
We have the following info:
[tex] n= 64[/tex] represent the sample size
[tex] X= 48[/tex] represent the number of people classified as successful
[tex]\hat p=\frac{48}{64}= 0.75[/tex] represent the estimated proportion successfull
The standard error for this case is given by this formula:
[tex] SE= \sqrt{\frac{\hat p(1-\hat p)}{n}}[/tex]
And replacing we got:
[tex] SE= \sqrt{\frac{0.75*(1-0.75)}{64}}= 0.0541[/tex]