contestada

A certain circle can be represented by the following equation. x^2+y^2+18x+14y+105=0 What is the center of the circle? What is the radius of the circle?

Respuesta :

Answer:

See below.

Step-by-step explanation:

Recall the equation for a circle:

[tex](x-h)^2+(y-k)^2=r^2[/tex], where (h,k) is the center and r is the radius.

We need to turn the given equation into the above format. We do this by completing the square.

First, group them:

[tex](x^2+18x)+(y^2+14y)=-105[/tex]

For the first section, complete the square for [tex]x^2+18x[/tex]:

[tex]x^2+18x+81-81[/tex]

[tex](x+9)^2-81[/tex]

Do the same for the second:

[tex]y^2+14y[/tex]

[tex]y^2+14y+49-49[/tex]

[tex](y+7)^2-49[/tex]

All together:

[tex]((x+9)^2-81)+((y+7)^2-49)=-105[/tex]

[tex](x+9)^2+(y+7)^2-130=-105[/tex]

[tex](x+9)^2+(y+7)^2=25[/tex]

The center is (-9,-7).

The radius is [tex]\sqrt{25}=5[/tex]

ACCESS MORE