A three-point bending test was performed on an aluminum oxide specimen having a circular cross section of radius 5.6 mm; the specimen fractured at a load of 4250 N when the distance between support points was 44 mm. Another test is to be performed on a specimen of this same material, but one that has a square cross section of 12 mm in length on each edge. At what load would you expect this specimen to fracture if the support point separation is maintained at 44 mm

Respuesta :

Answer:

F =  8849 N

Explanation:

Given:

Load at a given point = F =  4250 N

Support span = L = 44 mm

Radius = R = 5.6 mm

length thickness of tested material = 12 mm

First compute the flexural strength for circular cross section using the formula below:

σ[tex]_{fs} = F_{f} L / \pi R^{3}[/tex]

σ = FL / π R³

Putting the given values in the above formula:

σ = 4250 ( 44 x 10⁻³ ) / π  ( 5.6 x 10⁻³ ) ³

  = 4250 ( 44 x 10⁻³ )  / 3.141593 ( 5.6 x 10⁻³ ) ³

  = 4250 (44 x 1 /1000 )) / 3.141593 ( 5.6 x 10⁻³ ) ³

  = 4250 ( 11 / 250  ) / 3.141593 ( 5.6 x 10⁻³ ) ³

  = 187 / 3.141593 ( 5.6 x 1 / 1000 ) ³

  = 187 / 3.141593 (0.0056)³

  = 338943767.745358

  = 338.943768 x 10⁶

σ = 338 x 10⁶ N/m²

Now we compute the load i.e. F from the following formula:

[tex]F_{f}[/tex] = 2 σ[tex]_{fs}[/tex] d³/3 L

F = 2σd³/3L

  = 2(338 x 10⁶)(12 x 10⁻³)³ / 3(44 x 10⁻³)

  = 2 ( 338 x 1000000 ) ( 12 x 10⁻³)³ / 3 ( 44 x 10⁻³)

  = 2 ( 338000000 ) ( 12 x 10⁻³)³ / 3 ( 44 x 10⁻³)

  = 676000000 ( 12 x 10⁻³)³ / 3 ( 44 x 10⁻³)

  = 676000000 ( 12  x  1/1000  )³ / 3 ( 44 x 10⁻³)

  = 676000000 (  3  / 250  )³ / 3 ( 44 x 10⁻³)

  = 676000000 (  27  / 15625000 )  / 3 ( 44 x 10⁻³)

  = 146016  / 125 / 3 ( 44 x 1 / 1000  )

  = ( 146016  / 125 ) /  (3 ( 11 /  250 ))

  =  97344  / 11

F =  8849 N

ACCESS MORE