You’re standing at the highest point on the Moon, 10,786 mm above the level of the Moon’s mean radius. You’ve got a golf club and a golf ball.

Part A

(How fast would you need to hit the ball horizontally so it goes into a circular orbit?)

Express your answer with the appropriate units.

Part B

(If you hit the ball vertically with the same speed, to what height above you would it rise?)

Express your answer with the appropriate units.

Respuesta :

Answer:

A)   v = 1,675 10³ m / s  , B)    r₂ = 11,673 10⁶ m

Explanation:

A) This exercise we must use Newton's second law, where the forces of gravity are the Moon

        F = m a

acceleration is centripetal

        a = v² / r

force is the force of universal attraction

         F = G m M / r²

we substitute

        G m M / r² = m v² / r

        v² = G M / r

distance

        r = R_moon + h

        r = 1.74 10⁶ +1.0786 10⁴

        r = 1,750786 10⁶ m

we calculate

        v = √ (6.67 10⁻¹¹ 7.36 10²² / 1.75 10⁶)

        v = √ (2,8052 10⁶)

        v = 1,675 10³ m / s

B) let's use energy conservation

    Starting point. In the mountain

          Em₀ = K + U = ½ m v² + G m M / r

    Final point. Where the speed is zero

          [tex]Em_{f}[/tex] = U = G mM / r₂

           Em₀ = Em_{f}

           ½ m v² + G m M / r = G mM / r₂

           1 / r₂ = (½ v₂ + G M / r) / GM

let's calculate

 1 / r₂ = (½ (1,675 10³)² + 6.67 10⁻¹¹ 7.36 10²² / 1.75 10⁶) /(6.67 10⁻¹¹ 7.36 10²²)

           1 / r₂ = (1,4028 10⁶ + 2,805 10⁶) / 49.12 10¹¹

           1 / r₂ = 8.5664 10⁻⁷

            r₂ = 11,673 10⁶ m

ACCESS MORE