Respuesta :

Answer:

[tex]\dfrac{dy}{dx}\left ( \dfrac{x^2+y^2}{2\times y}-y \right )=x[/tex]

Step-by-step explanation:

Given that

[tex]x^2+y^2=2cy----(1)[/tex]

Now by differentiating the above equation with respect to x

[tex]2\times x+2\times y\times \dfrac{dy}{dx}=2\times c\times \dfrac{dy}{dx}[/tex]

[tex]x+ y\times \dfrac{dy}{dx}= c\times \dfrac{dy}{dx}-----(2)[/tex]

Form the above equation (1)

[tex]c=\dfrac{x^2+y^2}{2\times y}[/tex]

Putting the value of c in the equation (2)

[tex]x+ y\times \dfrac{dy}{dx}= \dfrac{x^2+y^2}{2\times y}\times \dfrac{dy}{dx}\\\dfrac{dy}{dx}\left ( \dfrac{x^2+y^2}{2\times y}-y \right )=x[/tex]

Thus the differential equation of the given curve will be

[tex]\dfrac{dy}{dx}\left ( \dfrac{x^2+y^2}{2\times y}-y \right )=x[/tex]

Curve for different value of c :

x² +y² = 2 c y

The above equation is an equation of a circle.That circle is having center on the y-axis.

Ver imagen StaceeLichtenstein
ACCESS MORE