Consider circle T with radius 24 in. And 0=startfraction 5 pi over 6 endfraction radians. Circle T is shown. Line segments S T and V T are radi with lengths of 24 in. Angles S T V are theta. What is the length if minor arc S V?

Respuesta :

Answer:

[tex]20\pi $ inches or \approx 62.83$ inches[/tex]

Step-by-step explanation:

[tex]\text{Central Angle of Arc SV}=\dfrac{5\pi}{6}$ rad$\\\text{Radius of Circle T}=24 in.\\\\\text{Length of an arc} = \dfrac{\theta}{2\pi} \times 2\pi r[/tex]

Therefore:

[tex]\text{Length of minor arc SV} = \dfrac{\frac{5\pi}{6}}{2\pi} \times 2\pi \times 24\\=20\pi $ inches\\\approx 62.83$ inches[/tex]

The length of minor arc SV is 62.83 inches.

ACCESS MORE