Unlike a roller coaster, the seats in a Ferris wheel swivel so that the rider is always seated upright. An 80-ft-diameter Ferris wheel rotates once every 24 s. What is the apparent weight of a 40 kg passenger at the lowest point of the circle? What is the apparent weight of a 40 kg passenger at the highest point of the circle?

Respuesta :

Answer:

Explanation:

Answer:

a

    The apparent weight is  [tex]N = 424.5 N[/tex]

b

    The apparent weight is  [tex]N = 358.5 N[/tex]

Explanation:

From the question we are told that

    The diameter of the Ferris wheel is d  =  80ft

    The period of the Ferris wheel is  [tex]T = 24 \ s[/tex]

     The mass of the passenger is  [tex]m = 40 \ kg[/tex]

     

The radius of the Ferris wheel is evaluated as  [tex]r = \frac{d}{2}[/tex] substituting values

          [tex]r = \frac{80}{2}[/tex]

         [tex]r = 40 \ ft[/tex]

converting to meters

           [tex]r = 40 * 0.3048 = 12.20 \ m[/tex]

The angular velocity of the Ferris wheel is mathematically represented as  

                [tex]w = \frac{2 \pi}{T}[/tex]

substituting values  

                [tex]w = \frac{2* 3.142 }{24}[/tex]

                [tex]w = \frac{2* 3.142 }{24}[/tex]

                [tex]w = 0.2618 \ rad/s[/tex]

   At the lowest the point the  apparent weight of the passenger is  equal to the normal force on the chair which is  mathematically represented as

             [tex]N = m (g + a_c)[/tex]

Where  [tex]a_c[/tex] is the centripetal acceleration which is mathematically represented  as  

             [tex]a = w^2 R[/tex]

So  

          [tex]N = m (g + w^2 R)[/tex]

substituting values  

              [tex]N = 40 (9.8 + (0.2618)^2 * 12.2)[/tex]

              [tex]N = 424.5 N[/tex]

   At the highest the point the  apparent weight of the passenger is  equal to the normal force on the chair which is  mathematically represented as

         [tex]N = m (g - a_c)[/tex]

          [tex]N = m (g - w^2 R)[/tex]

          [tex]N = 40 (9.8 - (0.2618)^2 * 12.2)[/tex]

          [tex]N = 358.5 N[/tex]

       

ACCESS MORE