Answer:
The Coulomb Barrier U is 25.91 MeV
Explanation:
Given that:
Atomic Mass of lead nucleus A = 208
atomic mass of an alpha particle A = 4
Radius of an alpha particle [tex]R_\alpha = R_o A^{^{\dfrac{1}{3}}[/tex]
where;
[tex]R_\alpha = 1.2 \times 10 ^{-15} \ m[/tex]
[tex]R_\alpha = R_o A^{^{\dfrac{1}{3}}[/tex]
[tex]R_\alpha = 1.2 \times 10 ^{-15} \ m \times (4) ^{^{\dfrac{1}{3}}[/tex]
[tex]R_\alpha = 1.905 \times 10^{-15} \ m[/tex]
Radius of the Gold nucleus
[tex]R_{Au}= R_o A^{^{\dfrac{1}{3}}[/tex]
[tex]R_{Au}= 1.2 \times 10 ^{-15} \ m \times (208) ^{^{\dfrac{1}{3}}[/tex]
[tex]R_{Au} = 7.11 \times 10^{-15} \ m[/tex]
[tex]R = R_\alpha + R_{Au}[/tex]
[tex]R = 1.905 \times 10^{-15} \ m + 7.11 \times 10^{-15} \ m[/tex]
[tex]R = 9.105 \times 10 ^{-15} \ m[/tex]
The electric potential energy of the Coulomb barrier [tex]U = \dfrac{Ke \ q_{\alpha} q_{Au}}{R}[/tex]
[tex]U = \dfrac{8.99 \times 10^9 \ N.m \ ^2/C ^2 \ \times 2 ( 82) \times \(1.60 \times 10^{-19} C \ \ e } {9.105 \times 10^{-15} \ m }[/tex]
U = 25908577.7eV
U = 25.908577 × 10⁶ eV
U = 25.91 MeV
The Coulomb Barrier U is 25.91 MeV