Answer:
The regression equation is:
[tex]y=3.77+0.36 x[/tex]
Step-by-step explanation:
The general form of a regression equation is:
[tex]y=\alpha +\beta x[/tex]
Here,
α = intercept
β = slope
Compute the value of intercept and slope as follows:
[tex]\begin{aligned} \alpha &= \frac{\sum{Y} \cdot \sum{X^2} - \sum{X} \cdot \sum{XY} }{n \cdot \sum{X^2} - \left(\sum{X}\right)^2} = \frac{ 29 \cdot 186 - 28 \cdot 173}{ 5 \cdot 186 - 28^2} =3.767\approx 3.77 \\ \\\beta &= \frac{ n \cdot \sum{XY} - \sum{X} \cdot \sum{Y}}{n \cdot \sum{X^2} - \left(\sum{X}\right)^2} = \frac{ 5 \cdot 173 - 28 \cdot 29 }{ 5 \cdot 186 - \left( 28 \right)^2} =0.363\approx 0.36\end{aligned}[/tex]
The regression equation is:
[tex]y=3.77+0.36 x[/tex]