Respuesta :
Answer:
B(-2,-3).
Step-by-step explanation:
The given points are A(-6,-5) and C(4,0).
We need to find the coordinates of point B on segment AC such that AB:BC=2:3.
It means point B divides the line segment AC in the ratio of 2:3.
Section formula: If a point divide a line segment in m:n, then
[tex]Point=\left(\dfrac{mx_2+nx_1}{m+n},\dfrac{my_2+ny_1}{m+n}\right)[/tex]
Using section formula, the coordinates of point B are
[tex]B=\left(\dfrac{2(4)+3(-6)}{2+3},\dfrac{2(0)+3(-5)}{2+3}\right)[/tex]
[tex]B=\left(\dfrac{8-18}{5},\dfrac{0-15}{5}\right)[/tex]
[tex]B=\left(\dfrac{-10}{5},\dfrac{-15}{5}\right)[/tex]
[tex]B=\left(-2,-3\right)[/tex]
Therefore, the coordinates of point B are (-2,-3).
Answer:
Therefore, the coordinates of point B are (-2,-3).
Step-by-step explanation: