Respuesta :
Answer:
The answer is below
Step-by-step explanation:
Given that:
mean value (μ) = 12 cm and standard deviation (σ) = 0.04 cm
a) Since a random sample (n) of 16 rings is taken, therefore the mean (μx) ans standard deviation (σx) of the sample mean Xbar is given by:
[tex]\mu_x=\mu=12\ cm\\\sigma_x=\frac{\sigma}{\sqrt{n} }=\frac{0.04}{\sqrt{16} }=0.01[/tex]
The sampling distribution of Xbar is centered about 12 cm and the standard deviation of the Xbar distribution is 0.01 cm
b) Since a random sample (n) of 64 rings is taken, therefore the mean (μx) ans standard deviation (σx) of the sample mean Xbar is given by:
[tex]\mu_x=\mu=12\ cm\\\sigma_x=\frac{\sigma}{\sqrt{n} }=\frac{0.04}{\sqrt{64} }=0.005\ cm[/tex]
The sampling distribution of Xbar is centered about 12 cm and the standard deviation of the Xbar distribution is 0.005 cm
c) n = 16 and the raw score (x) = 11.95 cm
The z score equation is given by:
[tex]z=\frac{x-\mu_x}{\sigma_x} =\frac{x-\mu}{\sigma/\sqrt{n} } \\z=\frac{11.95-12}{0.04/\sqrt{16} }\\ z=-5[/tex]
P(x > 11.95 cm) = P(z > -5) = 1 - P(z < -5) = 1 - 0.000001 ≅ 1 ≅ 100%
d) for n = 64, the standard deviation is 0.01 cm, therefore it is more likely to be within .01cm of 12cm
Using the normal distribution and the central limit theorem, it is found that:
a) The sampling distribution is approximately normal, centered at 12 cm and with a standard deviation of 0.01 cm.
b) The sampling distribution is approximately normal, centered at 12 cm and with a standard deviation of 0.005 cm.
c) 100% probability that the average diameter of piston rings from a sample size 16 is more than 11.95 cm .
d) Due to the lower standard error, the sample of 64 is more likely to be within 0.01 cm of 12 cm.
In a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
- It measures how many standard deviations the measure is from the mean.
- After finding the z-score, we look at the z-score table and find the p-value associated with this z-score, which is the percentile of X.
- The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
In this problem:
- Mean of 12 cm, thus [tex]\mu = 12[/tex]
- Standard deviation of 0.04 cm, thus [tex]\sigma = 0.04[/tex].
Item a:
Sample of 16, thus [tex]n = 16[/tex] and [tex]s = \frac{0.04}{\sqrt{16}} = 0.01[/tex]
The sampling distribution is approximately normal, centered at 12 cm and with a standard deviation of 0.01 cm.
Item b:
Sample of 64, thus [tex]n = 64[/tex] and [tex]s = \frac{0.04}{\sqrt{64}} = 0.005[/tex]
The sampling distribution is approximately normal, centered at 12 cm and with a standard deviation of 0.005 cm.
Item c:
This probability is 1 subtracted by the p-value of Z when X = 11.95, thus:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
By the Central Limit Theorem:
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{11.95 - 12}{0.01}[/tex]
[tex]Z = -5[/tex]
[tex]Z = -5[/tex] has a p-value of 0.
1 - 0 = 1.
100% probability that the average diameter of piston rings from a sample size 16 is more than 11.95 cm .
Item d:
Due to the lower standard error, the sample of 64 is more likely to be within 0.01 cm of 12 cm.
A similar problem is given at https://brainly.com/question/24663213