In 1998, as an advertising campaign, the Nabisco Company announced a "1000 Chips Challenge," claiming that every 18-ounce bag of their Chips Ahoy cookies contained at least 1000 chocolate chips. Dedicated statistics students at the Air Force Academy (no kidding) purchased some randomly selected bags of cookies and counted the chocolate chips. Some of their data are given below. 1219 1214 1087 1200 1419 1121 1325 1345 1244 1258 1356 1132 1191 1270 1295 1135 Find a 95% confidence interval for the mean number of chips in a bag of Chips Ahoy Cookies.

Respuesta :

Answer:

A 95% confidence interval for the mean number of chips in a bag of Chips Ahoy Cookies is [1187.96, 1288.44].

Step-by-step explanation:

We are given that statistics students at the Air Force Academy (no kidding) purchased some randomly selected bags of cookies and counted the chocolate chips.

Some of their data are given below; 1219, 1214, 1087, 1200, 1419, 1121, 1325, 1345, 1244, 1258, 1356, 1132, 1191, 1270, 1295, 1135.

Firstly, the pivotal quantity for finding the confidence interval for the population mean is given by;

                          P.Q.  =  [tex]\frac{\bar X-\mu}{\frac{s}{\sqrt{n} } }[/tex]  ~ [tex]t_n_-_1[/tex]

where, [tex]\bar X[/tex] = sample mean number of chocolate chips = [tex]\frac{\sum X}{n}[/tex] = 1238.2

            s = sample standard deviation = [tex]\sqrt{\frac{\sum (X-\bar X)^{2} }{n-1} }[/tex]  = 94.3

            n = sample of car drivers = 16

            [tex]\mu[/tex] = population mean number of chips in a bag

Here for constructing a 95% confidence interval we have used a One-sample t-test statistics because we don't know about population standard deviation.

So, 95% confidence interval for the population mean, [tex]\mu[/tex] is ;

P(-2.131 < [tex]t_1_5[/tex] < 2.131) = 0.95  {As the critical value of t at 15 degrees of

                                             freedom are -2.131 & 2.131 with P = 2.5%}  

P(-2.131 < [tex]\frac{\bar X-\mu}{\frac{s}{\sqrt{n} } }[/tex] < 2.131) = 0.95

P( [tex]-2.131 \times {\frac{s}{\sqrt{n} } }[/tex] < [tex]{\bar X-\mu}[/tex] < [tex]2.131 \times {\frac{s}{\sqrt{n} } }[/tex] ) = 0.95

P( [tex]\bar X-2.131 \times {\frac{s}{\sqrt{n} } }[/tex] < [tex]\mu[/tex] < [tex]\bar X+2.131 \times {\frac{s}{\sqrt{n} } }[/tex] ) = 0.95

95% confidence interval for [tex]\mu[/tex] = [ [tex]\bar X-2.131 \times {\frac{s}{\sqrt{n} } }[/tex] , [tex]\bar X+2.131 \times {\frac{s}{\sqrt{n} } }[/tex] ]

                                   = [ [tex]1238.2-2.131 \times {\frac{94.3}{\sqrt{16} } }[/tex] , [tex]1238.2+2.131 \times {\frac{94.3}{\sqrt{16} } }[/tex] ]

                                   = [1187.96, 1288.44]

Therefore, a 95% confidence interval for the mean number of chips in a bag of Chips Ahoy Cookies is [1187.96, 1288.44].

ACCESS MORE