if the first and third of three consecutive odd integers are added, the result is 75 less than five times the second integers. find the third integer. please show work

Respuesta :

Answer:

The third integer is 27

Step-by-step explanation:

Given

Represent the consecutive odd numbers with [tex]T_1, T_2; and\ T_3[/tex]

Since they are consecutive odds, then

[tex]T_2 = 2 + T_1[/tex]

[tex]T_3 = 2 + T_2[/tex]

From the first statement in the question, we have that

[tex]T_1 + T_3 = 5 T_2 - 75[/tex]

Required

Find the third integer

Recall that

Substitute [tex]T_2 = 2 + T_1[/tex] in [tex]T_3 = 2 + T_2[/tex]

[tex]T_3 = 2 + 2 + T_1[/tex]

[tex]T_3 = 4 + T_1[/tex]

Substitute [tex]T_3 = 4 + T_1[/tex] and [tex]T_2 = 2 + T_1[/tex] in [tex]T_1 + T_3 = 5 T_2 - 75[/tex]

[tex]T_1 + 4 + T_1 = 5(2 + T_1) - 75[/tex]

Open Brackets

[tex]T_1 + 4 + T_1 = 10 + 5T_1 - 75[/tex]

Collect like terms

[tex]T_1 + T_1 + 4 = 5T_1 - 75 + 10[/tex]

[tex]2T_1 + 4 = 5T_1 - 65[/tex]

Collect like terms

[tex]2T_1 - 5T_1 = - 65 - 4[/tex]

[tex]-3T_1 = - 69[/tex]

Divide both sides by -3

[tex]\frac{-3T_1}{-3} = \frac{- 69}{-3}[/tex]

[tex]T_1 = 23[/tex]

Recall that [tex]T_3 = 4 + T_1[/tex]

[tex]T_3 = 4 + 23[/tex]

[tex]T_3 = 27[/tex]

The third integer is 27