Brainliest? Get this correct What is the difference of the rational expressions below?


Answer:
A. [tex]\frac{x^2-3x+6}{x^2 - 2x}[/tex]
Step-by-step explanation:
1. Move all of numerators above the corresponding common denominator
2. Multiply inside the parentheses then remove any remaining parenthesis to get your final answer to get your fraction.
Answer:
[tex] \dfrac{x^2 - 3x + 6}{x^2 - 2x} [/tex]
Step-by-step explanation:
[tex] \dfrac{x}{x - 2} - \dfrac{3}{x} = [/tex]
[tex] = \dfrac{(x)x}{(x)(x - 2)} - \dfrac{(x - 2)(3)}{(x - 2)(x)} [/tex]
[tex] = \dfrac{x^2}(x - 2)} - \dfrac{3x - 6}{(x - 2)(x)} [/tex]
[tex] = \dfrac{x^2 - (3x - 6)}{x^2 - 2x} [/tex]
[tex] = \dfrac{x^2 - 3x + 6}{x^2 - 2x} [/tex]