Answer:
[tex]sin(A+B)=-\dfrac{345}{377}[/tex]
Step-by-step explanation:
Given that:
[tex]sin(A)=-\dfrac{20}{29}\\cos(B)=\dfrac{12}{13}[/tex]
A is in 3rd quadrant and B is in 1st quadrant.
To find: sin(A+B)
Solution:
We know the Formula:
1. [tex]sin(A+B) = sinAcosB+cosAsinB[/tex]
2. [tex]sin^{2} \theta+cos^{2} \theta=1[/tex]
Now, let us find the values of cosA and sinB.
[tex]sin^{2} A+cos^{2} A=1\\\Rightarrow (\frac{-20}{29})^2+cos^{2} A=1\\\Rightarrow cos^{2} A=1- \dfrac{400}{941}\\\Rightarrow cos^{2} A=\dfrac{941-400}{941}\\\Rightarrow cos^{2} A=\dfrac{441}{941}\\\Rightarrow cos A=\pm \dfrac{21}{29}[/tex]
A is in 3rd quadrant, so cosA will be negative,
[tex]\therefore cos A=-\dfrac{21}{29}[/tex]
[tex]sin^{2} B+cos^{2} B=1\\\Rightarrow sin^{2} A+(\frac{12}{13})^2=1\\\Rightarrow sin^{2} B=1- \dfrac{144}{169}\\\Rightarrow sin^{2} B=\dfrac{169-144}{169}\\\Rightarrow sin^{2} B=\dfrac{25}{169}\\\Rightarrow sinB=\pm \dfrac{5}{13}[/tex]
B is in 1st quadrant, sin B will be positive.
[tex]sinB =\dfrac{5}{13}[/tex]
Now, using the formula:
[tex]sin(A+B) = sinAcosB+cosAsinB\\\Rightarrow -\dfrac{20}{29} \times \dfrac{12}{13}-\dfrac{21}{29}\times \dfrac{5}{13}\\\Rightarrow -\dfrac{20\times 12+21\times 5}{29\times 13} \\\Rightarrow -\dfrac{240+105}{29\times 13} \\\Rightarrow -\dfrac{345}{377}[/tex]
[tex]sin(A+B)=-\dfrac{345}{377}[/tex]