Type the correct answer in each box. If necessary, use/for the fraction bar(s).

In this triangle, the product of Sin B and tan C is_____, and the product of sin C and tan B is_____.

please view picture at the top

Type the correct answer in each box If necessary usefor the fraction bars In this triangle the product of Sin B and tan C is and the product of sin C and tan B class=

Respuesta :

Answer:

1). sinB × tanC = [tex]\frac{c}{a}[/tex]

2).  sinC × tanB = [tex]\frac{b}{a}[/tex]

Step-by-step explanation:

From the figure attached,

A right triangle has been given with m∠A = 90°, m(AC) = b, m(AB) = c and m(BC) = a

SinB  = [tex]\frac{\text{Opposite side}}{\text{Hypotenuse}}[/tex]

         = [tex]\frac{\text{AC}}{\text{BC}}[/tex]

         = [tex]\frac{b}{a}[/tex]

tanB = [tex]\frac{\text{Opposite side}}{\text{Adjacent side}}[/tex]

        = [tex]\frac{\text{AC}}{\text{AB}}[/tex]

        = [tex]\frac{b}{c}[/tex]

SinC = [tex]\frac{\text{Opposite side}}{\text{Hypotenuse}}[/tex]

        = [tex]\frac{\text{AB}}{\text{BC}}[/tex]

        = [tex]\frac{c}{a}[/tex]

tanC = [tex]\frac{\text{Opposite side}}{\text{Adjacent side}}[/tex]

        = [tex]\frac{c}{b}[/tex]

Now sinB × tanC = [tex]\frac{b}{a}\times \frac{c}{b}[/tex]

                            = [tex]\frac{c}{a}[/tex]

And sinC × tanB = [tex]\frac{c}{a}\times \frac{b}{c}[/tex]

                           = [tex]\frac{b}{a}[/tex]

Answer:

1). sinB × tanC =

2).  sinC × tanB =

Step-by-step explanation:

From the figure attached,

A right triangle has been given with m∠A = 90°, m(AC) = b, m(AB) = c and m(BC) = a

SinB  =

        =

        =

tanB =

       =

       =

SinC =

       =

       =

tanC =

       =

Now sinB × tanC =

                           =

And sinC × tanB =