Respuesta :

Answer:

      -7 ± i√127

x = -----------------

              2

Step-by-step explanation:

Next time, please share the possible answers.  Thank you.

x^2 + 7x + 44 has a parabolic graph that opens up and never intersects the x-axis.  Thus, it has no real roots.

The coefficients of this polynomial are a = 1, b = 7, c = 44.

The discriminant is b^2 - 4ac, or 7^2 - 4(1)(44) = -127.  As expected, this is negative, confirming that the roots are complex.

The roots are:

      -7 ± i√127

x = -----------------

              2

ACCESS MORE